1
$\begingroup$

For $n\geq 1$, let $f\in\mathcal{C}^2(\mathbb{R}^n ; \mathbb{R})$ such that $f^{-1}(\mathbb{R}_-^*)\neq\varnothing$ and $\forall x\in\mathbb{R}^n$: $\nabla f(x)\neq 0$ and $\mathcal{Hess}f(x)$ is positive definite. Let $C=\lbrace x\in\mathbb{R}^n,f(x)\leq 0\rbrace$. $C$ is then a closed convex set, with boundary $\partial C=\lbrace x\in\mathbb{R}^n,f(x)= 0\rbrace$. Its asymptotic cone is denoted $C^{as}$, which has a polar cone denoted by $(C^{as})^\circ$.

Question: for "Int" denoting the interior, do the following hold: $\text{Int}\big((C^{as})^\circ\big)\subset\bigcup_{x\in\partial C} \lbrace\lambda\nabla f(x)\rbrace_{\lambda\geq 0}$ ?

$\endgroup$
2
  • 1
    $\begingroup$ This will not hold in general, as the union does not have to be closed. $\endgroup$ Commented Jun 25, 2023 at 14:49
  • $\begingroup$ I modified the question, thanks for this remark. $\endgroup$ Commented Jun 26, 2023 at 5:57

1 Answer 1

1
$\begingroup$

$\newcommand{\R}{\mathbb R}\newcommand{\inter}{\operatorname{int}}$The answer is yes.

Here is the proof.

The asymptotic cone of $C$ is \begin{equation*} K:=C^{as}=\{y\in\R^n\colon \exists(x_k) \text{ in }C\ \;\exists(t_k) \text{ in }\R\ \; t_k\to\infty\ \&\ x_k/t_k\to y\}. \tag{10}\label{10} \end{equation*} The polar cone to $K$ is \begin{equation*} K^\circ:=\{z\in\R^n\colon z\cdot y\le0\ \forall y\in K\}, \end{equation*} where $\cdot$ denotes the dot product.

Take any \begin{equation*} z\in\inter(K^\circ). \end{equation*} We want to show that \begin{equation*} z\overset{\text{(?)}}\in Z:=\bigcup_{x\in\partial C} \R_+\nabla f(x), \tag{20}\label{20} \end{equation*} where $\R_+w:=\{tw\colon t\in[0,\infty)\}$ for $w\in\R^n$. Clearly, without loss of generality (wlog) \begin{equation} z\ne0. \tag{30}\label{30} \end{equation}

Lemma 1: We have $z\cdot y<0$ for all $y\in K\setminus\{0\}$. (Here, as usual, $\inter$ denotes the interior of a set.)

Proof: Take any $y\in K\setminus\{0\}$. Then $z+ty\in K^\circ$ for all small enough real $t>0$, so that $z\cdot y=(z+ty)\cdot y-ty\cdot y<(z+ty)\cdot y\le0$. $\quad\Box$

Lemma 2: The supremum (say $s$) of the set $z\cdot C:=\{z\cdot x\colon x\in C\}$ is attained at some $x^*\in \partial C$, so that $z\cdot x\le s=z\cdot x^*$ for all $x\in C$.

Proof: Suppose the contrary, that the supremum of the set $z\cdot C$ is not attained. Let $(x_k)$ be a sequence in $C$ such that $z\cdot x_k\to s$.

If the sequence $(x_k)$ is bounded, then, passing to a subsequence, we see that wlog $x_k\to x^*$ for some $x^*\in\R^n$; moreover, $x^*\in C$, since the set $C$ is closed. So, $z\cdot x^*=\lim_k z\cdot x_k=s$, so that the supremum of the set $z\cdot C$ is attained, a contradiction.

So, the sequence $(x_k)$ is unbounded. So, passing to subsequences, we see that wlog $|x_k|\to \infty$ and then $x_k/|x_k|\to y$ for some $y\in\R^n\setminus\{0\}$, where $|\cdot|$ denotes the Euclidean norm. So, by \eqref{10}, $y\in K\setminus\{0\}$, and
\begin{equation} z\cdot y=\lim_k\frac{z\cdot x_k}{|x_k|}\ge0, \end{equation} since $z\cdot x_k\to s\in(-\infty,\infty]$ and $|x_k|\to\infty$. So, we get a contradiction with Lemma 1. So, the supremum of the set $z\cdot C$ is attained at the point $x^*\in C$. Finally, in view of \eqref{30}, the supremum of the set $z\cdot C$ cannot be attained at any point in $\inter C$. So, Lemma 2 is proved. $\quad\Box$

Let now $h:=\nabla f(x^*)$, so that $h\ne0$, by a condition in the OP. If $z\notin\R_+ h$, then there is some $y\in\R^n$ such that $y\cdot h<0<y\cdot z$. So, the directional derivative $y\cdot h$ of $f$ at $x^*$ in the direction of $y$ is $<0$. So, for all small enough real $t>0$ we have $f(x^*+ty)<f(x_*)\le0$ and hence $x^*+ty\in C=\{x\in\R^n\colon f(x)\le0\}$, which implies \begin{equation} z\cdot x^*=s\ge z\cdot(x^*+ty)=z\cdot x^*-tz\cdot y<z\cdot x^*, \end{equation} a contradiction.

Thus, \begin{equation} z\in\R_+ h=\R_+\nabla f(x^*)\subseteq Z, \end{equation} so that \eqref{20} holds. $\quad\Box$


One may note that, instead of the conditions $f\in\mathcal{C}^2(\R^n;\R)$ and $\forall x\in\R^n$ $\nabla f(x)\ne0$ in the OP, in the above proof we only used the weaker restriction that $f$ is differentiable on $\partial C$ with $\nabla f(x)\ne0$ for $x\in\partial C$.

Moreover, the condition that the Hessian of $f$ be positive definite everywhere was not used at all. Furthermore, note that the positive definiteness of the Hessian of $f$ implies that the set $C$ is convex -- but even the convexity of $C$ was not used in the proof.

The latter remark is illustrated in the picture below, showing (for $n=2$) the (nonconvex, light-gray) set $C\cap\big([0,2\sqrt c\,]\times[-2\sqrt c,2\sqrt c\,]\big)$ for $f=f_c$ and $c=8$, where \begin{equation} f_c(X):=g_c(y)-x,\quad g_c(y):=\sqrt{y^2+\frac{c}{1+c y^2}} \end{equation} for $X=(x,y)\in\R^2$. Shown also are the corresponding (yellow) set $K^\circ\cap\big([0,2\sqrt c\,]\times[-2\sqrt c,2\sqrt c\,]\big)$ and (orange) set $Z\cap\big([0,2\sqrt c\,]\times[-2\sqrt c,2\sqrt c\,]\big)$.

enter image description here

In this case, $K=\{(x,y)\in\R^2\colon|y|\le x\}$, $K^\circ=\{(x,y)\in\R^2\colon|y|\le|x|,\,x\le0\}$, $\inter(K^\circ)=\{(x,y)\in\R^2\colon|y|<|x|,\,x<0\}$, and $$Z=\{(x,y)\in\R^2\colon|y|\le k_8|x|,\,x\le0\},$$ where $k_8:=\max_{y\in\R}g'_8(y)=2.870\dots$, so that $\inter(K^\circ)\subsetneq\inter Z$.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.