Let $$f(n,k)=n\operatorname{mod} k, g(n,k)=\left\lfloor\frac{n}{k}\right\rfloor$$
Let $T(n,k)$ be A072030, i.e., array read by antidiagonals: $T(n,k)$ = number of steps in simple Euclidean algorithm for $\gcd(n,k)$ where $n\geqslant 1, k\geqslant 1$. Here $$T(n,k)=\begin{cases} 0,&\text{if $n<1$ or $k<1$;}\\ 1,&\text{if $n=k$;}\\ T(k,n),&\text{if $n<k$;}\\ T(k,n-k)+1,&\text{otherwise.} \end{cases}$$ Let $$R(n,k)=\begin{cases} 0,&\text{if $n<2$ or $k\geqslant n$;}\\ 2^{g(n,k)-2},&\text{if $f(n,k)=0$;}\\ 2^{T(k-f(n,k), f(n, k)) + g(n, k) - 1} + R(k, f(n, k)),&\text{otherwise.} \end{cases}$$ I conjecture that set of values of $R(n,k)$ (when we read it as triangle by rows) where $\frac{n}{k}$ is irreducible fraction such that $n,k\in\mathbb{N}$, $n>k\geqslant 1$ form a permutation of natural numbers.
Here is the PARI prog to verify this conjecture:
T(n, k) = if( n<1 || k<1, 0, if( n==k, 1, if( n<k, T(k, n), 1 + T(k, n-k)))) \\ from A072030 R(n, k)=if(n<2 || k>=n, 0, my(A=n%k, B=n\k); if(A==0, 2^(B-2), 2^(T(k-A, A) + B - 1) + R(k, A))) my(x=2, y=1); for(k=1, 299, while(!(R(x, y)==k), y++; if(x==y, x++; y=1, if(gcd(x,y)>1, y++; if(x==y, x++; y=1)))); print([x,y]); x=2; y=1); It appears that irreducible fractions corresponding to each natural number are A071585/A071766.
Is there a way to prove it?