Let $G$ be a symmetric Gaussian random matrix with iid $E[G_{ij}]=0$ and $E[G_{ij}^2]=\frac{1}{n}$, and ordering its eigenvalues $\lambda_1\le \lambda_2\le \dots \le \lambda_n$ corresponding eigenvectors $v_1,\dots, v_n$. Define $X_t=\{X^i_t\}$ is a vector on $R^n$ for time $t\ge 0$ and $X_0$ is distributed uniformly on the unit sphere. Let $h(t)= X_t\cdot v_1$.
Let $T_\epsilon:=inf_{t>0}\{h(t)\ge \epsilon\}$. Assume that $$ h(t)\ge h(0)e^{2(\lambda_2-\lambda_1)t}\ge h(0)e^{2\delta t} $$ where $\delta=\min\{\lambda_i-\lambda_j\}$ is the smallest gap.
I try to find the upper bound of $T_\epsilon$ with high probability $1-Ce^{-c n}$ (or something like that).