Take any integer $k\in[1,n]$ and any $t\in[1/2,1]$. Consider the problem of finding the exact upper bound on $\sum_{i=k+1}^n x_i^2$ given the conditions \begin{equation*} x_1\ge\cdots\ge x_n\ge0,\quad\sum_{i=1}^n x_i=1,\quad\sum_{i=1}^n x_i^2=t. \tag{10}\label{10} \end{equation*} By continuity and compactness, there is a maximizer $x=(x_1,\dots,x_n)$ of $\sum_{i=k+1}^n x_i^2$ given the conditions \eqref{10}. In what follows, let $x$ be such a maximizer (unless specified otherwise).
The cases when $n=k$ or $t=1$ are trivial: then conditions \eqref{10} imply $\sum_{i=k+1}^n x_i^2=0$. So, assume $n\ge k+1$ and $t\in[0,1)$. Then there is some integer $i\in[k+1,n]$ such that $x_i>0$. Indeed, if $x_1=\sqrt t$, $x_2=\cdots=x_{k+1}=\dfrac{1-\sqrt t}k$, and $x_i=0$ for $i>k+1$, then conditions \eqref{10} hold and $\sum_{i=k+1}^n x_i^2>0$. So, \begin{equation*} \sum_{i=k+1}^n x_i^2>0 \tag{11}\label{11} \end{equation*} for the maximizer $x=(x_1,\dots,x_n)$ of $\sum_{i=k+1}^n x_i^2$.
To obtain a contradiction, suppose that the maximizer $x=(x_1,\dots,x_n)$ is such that the $x_i$'s take at least three distinct values $u_1,u_2,u_3$ with respective multiplicities $m_1,m_2,m_3$ such that $u_1>u_2>u_3>0$. Without loss of generality, the "run" $R_3:=\{i\colon x_i=u_3\}$ of the repeated value $u_3$ is the rightmost run of a strictly positive value; that is, if $i_3:=\max R_3$, then $x_i=0$ for all $i>i_3$. So, in view of \eqref{11}, $i_3\ge k+1$. Let us apply respective infinitesimal changes $\dfrac{du_1}{m_1},\dfrac{du_2}{m_2},\dfrac{du_3}{m_3}$ to $u_1,u_2,u_3$ such that \begin{equation*} du_1+du_2+du_3=0,\quad u_1du_1+u_2du_2+u_3du_3=0,\quad u_3du_3>0; \tag{12}\label{12} \end{equation*} to satisfy conditions \eqref{12}, let \begin{equation*} du_3>0,\quad du_2:=-\frac{u_1-u_3}{u_1-u_2}\,du_3, \quad du_1:=\frac{u_2-u_3}{u_1-u_2}\,du_3. \end{equation*} Then the conditions \eqref{10} will continue to hold, for $u_1+\dfrac{du_1}{m_1},u_2+\dfrac{du_2}{m_2},u_3+\dfrac{du_3}{m_3}$ in place of $u_1,u_2,u_3$, whereas the target sum $\sum_{i=k+1}^n x_i^2$ will strictly increase (since $i_3\ge k+1$), which will contradict the assumption that $x=(x_1,\dots,x_n)$ is a maximizer.
Thus, the $x_i$'s take at most two distinct values $u,v$ such that $u\ge v>0$. So, for some integers $j\in[1,k]$ and $l\ge1$ we have \begin{equation*} x_1=\cdots=x_j=u,\quad x_{j+1}=\cdots=x_{k+l}=v, \quad x_i=0\text{ for }i>k+l. \end{equation*} If $j\ge2$, then the condition $\sum_{i=1}^n x_i=1$ in \eqref{10} implies $u<\frac12$ and hence $x_i<\frac12$ for all $i$, so that $\sum_{i=1}^n x_i^2<\frac12\,\sum_{i=1}^n x_i=\frac12\le t$, which contradicts the condition $\sum_{i=1}^n x_i^2=t$ in \eqref{10}. So, $j=1$ and we have \begin{equation*} x_1=u,\quad x_2=\cdots=x_{k+l}=v, \quad x_i=0\text{ for }i>k+l. \end{equation*} Now the equations $\sum_{i=1}^n x_i=1$ and $\sum_{i=1}^n x_i^2=t$ become $u+(k+l-1)v=1$ and $u^2+(k+l-1)v^2=t$. Solving the latter two equations for $u$ and $v$, we see that the maximum of $\sum_{i=k+1}^n x_i^2$ given the conditions \eqref{10} is of the form \begin{equation*} M_k(l):=\frac l{(k+l)^2}\,\Big(1-\sqrt{1-\frac{k+l}{k+l-1}\,(1-t)}\Big)^2 \end{equation*} for some integer $l\ge1$. We shall assume that $n\ge k+l$, not to let $n$ play an essential role.
Now, to get the maximum of $\sum_{i=k+1}^n x_i^2$ given \eqref{10}, it remains to maximize $M_k(l)$ in $l$. This maximization seems rather complicated to be done explicitly, even though the defining expression for $M_k(l)$ is algebraic.
Instead of the exact maximization of $M_k(l)$ in $l$, let us get a good upper bound on $M_k(l)$. Since $\frac{k+l}{k+l-1}\le2$ and $\sqrt z\ge z$ for $z\in[0,1]$, we have \begin{equation*} M_k(l)\le\frac l{(k+l)^2}\,2^2(1-t)^2\le\frac{(1-t)^2}k. \end{equation*}
In my other answer on this page, it was shown (see (3) there, with $s=t$ when $t\in[1/2,1]$) that no upper bound on $\sum_{i=k+1}^n x_i^2$ given \eqref{10} can be better than $\asymp \frac{(1-t)^2}k$ for $t\in[1/2,1]$. It was also shown in that answer that the the optimal upper bound on $\sum_{i=k+1}^n x_i^2$ is $\asymp\dfrac1k$ for $t\in[0,1/2]$.
Thus, the optimal upper bound on $\sum_{i=k+1}^n x_i^2$ given \eqref{10} is $\asymp \frac{(1-t)^2}k$ for all $t\in[0,1]$.