2
$\begingroup$

How can we prove the following asymptotic lower bound for the regularized Beta function when $n\rightarrow\infty$?

$$\int_0^{1} I_{2 t - t^2}\left(\frac{n - 1}{2}, \frac{1}{2}\right) dt=\Omega\left(\frac{1}{\sqrt{n}}\right)$$

$\endgroup$
1
  • $\begingroup$ The left side is not a function of $n$ once you've taken the limit. $\endgroup$ Commented Dec 21, 2020 at 21:25

1 Answer 1

6
$\begingroup$

This integral can actually be evaluated in closed form, from which the large-$n$ asymptotics follows readily: $$\int_0^{1} dt\, I_{2 t - t^2}(a,b)= \frac{1}{B(a,b)}\int_0^1 dt\,\int_0^{2t-t^2} ds\,s^{a-1}(1-s)^{b-1}$$ $$=\frac{1}{B(a,b)}\int_0^1 ds\,\frac{s^{a-1} (1-s)^{b+\frac{1}{2}}}{1-s}=\frac{\Gamma (a) \Gamma \left(b+\frac{1}{2}\right)}{\Gamma \left(a+b+\frac{1}{2}\right) B(a,b)}$$ (for the first equality I substituted the integral expression for the Beta function and for the second equality I changed the order of integration).
So the desired integral is $$\int_0^{1} I_{2 t - t^2}\left(\tfrac{n - 1}{2}, \tfrac{1}{2}\right) dt = \frac{2}{(n-1) B\left(\frac{n-1}{2},\frac{1}{2}\right)}\rightarrow\sqrt{\frac{2}{\pi n}} +\frac{1}{(2n)^{3/2}\sqrt{\pi}}+\cdots$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.