0
$\begingroup$

We consider a matrix

$$A:=\begin{pmatrix} 0 & b & 0 &f \\a & 0 & e & 0 \\ 0 & d & 0 & h \\ c& 0 & g & 0 \end{pmatrix}.$$

This matrix has the interesting property that if you multiply it once with iself, it will have entries only where at the moment it has zero entries, in fact

$$A^2= \left( \begin{matrix} a b+c f & 0 & b e+f g & 0 \\ 0 & a b+d e & 0 & a f+e h \\ a d+c h & 0 & d e+g h & 0 \\ 0 & b c+d g & 0 & c f+g h \\ \end{matrix} \right)$$

and by multiplying with $A$ again

$$A^3=\left( \begin{array}{cccc} 0 & b (a b+c f)+d (b e+f g) & 0 & f (a b+c f)+h (b e+f g) \\ a (a b+d e)+c (a f+e h) & 0 & e (a b+d e)+g (a f+e h) & 0 \\ 0 & b (a d+c h)+d (d e+g h) & 0 & f (a d+c h)+h (d e+g h) \\ a (b c+d g)+c (c f+g h) & 0 & e (b c+d g)+g (c f+g h) & 0 \\ \end{array} \right)$$

the entries are back to where we started from.

I am wondering now, if there is a way to write an explicit (so not recursive) formula for the entries $A_{21}$ and $A_{41}$ of $A^{2n+1}$ and $n \in \mathbb N$?

$\endgroup$

1 Answer 1

1
$\begingroup$

Swap the second and third row and column (which is a conjugation by the orthogonal permutation matrix $$ \Pi = \begin{bmatrix} 1 & 0 &0 & 0\\ 0 & 0 &1 & 0\\ 0 & 1 &0 & 0\\ 0 & 0 &0 & 1 \end{bmatrix} = \Pi^*. $$ Then, working with $2\times 2$ blocks, $$ \Pi A \Pi^* = \begin{bmatrix}0 & B\\ C & 0\end{bmatrix}, $$ with $$ B = \begin{bmatrix} b & f\\ d & h \end{bmatrix}, \, C = \begin{bmatrix}a & e\\ c & g\end{bmatrix}. $$ So $$ \Pi A^{2n+1} \Pi^* = (\Pi A \Pi^*)^{2n+1} = ((\Pi A \Pi^*)^2)^n (\Pi A \Pi^*)= \begin{bmatrix} BC & 0\\ 0 & CB \end{bmatrix}^n \begin{bmatrix}0 & B\\ C & 0\end{bmatrix} =\begin{bmatrix}0 & (BC)^n B\\ (CB)^nC & 0\end{bmatrix} $$ If you expand out the entries of $CB$ and $BC$ in terms of $a,b,\dots,h$ you get closed formulas for all entries.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.