Given are a positive integer $n$ and positive real numbers $a_1,\dots,a_n,b_1,\dots,b_n$. A subset $S\subseteq N=\{1,\dots,n\}$ is called $a$-good if $$\sum_{i\in S}a_i\geq \frac{1}{2}\left(\sum_{i\in N\backslash S}a_i-\min_{i\in N\backslash S}a_i\right),$$ and $b$-good if $$\sum_{i\in S}b_i\geq 2\left(\sum_{i\in N\backslash S}b_i-\min_{i\in N\backslash S}b_i\right).$$ Are there always two disjoint subsets, one $a$-good and the other $b$-good?
If $a_i = b_i$ for all $i$, this is true by a greedy algorithm.