Does the Riesz-Thorin interpolation theorem hold for real-linear operators?
The standard proof uses complex linearity, but maybe another proof avoids the assumption of complex-linearity?
Does the Riesz-Thorin interpolation theorem hold for real-linear operators?
The standard proof uses complex linearity, but maybe another proof avoids the assumption of complex-linearity?
No.
Let $T:\mathbb R^2\to\mathbb R^2$ be $T(x_1,x_2)=(x_1-x_2,x_1+ax_2)$, where $1<a<\frac54$.
For $\|x\|_\infty=\|y\|_\infty=1$, we have $$\begin{aligned}\langle Tx,y\rangle&=|(x_1-x_2)y_1+(x_1+ax_2)y_2|\\&\le|y_1+y_2|+|y_1-y_2|+a-1\\&\le a+1\end{aligned}$$ where equality holds when $x=y=(1,1)$. So $\|T\|_{\infty\to1}=a+1$.
We have $$\begin{aligned}\|Tx\|_2^2&=(x_1-x_2)^2+(x_1+ax_2)^2\\&=r\|x\|_2^2-(px_1+qx_2)^2\\&\le r\|x\|_2^2\end{aligned}$$ where $p^2-q^2=a^2-1$, $pq=1-a$, and $r=p^2+2$. Solving the quadratic equation, we have $r=\frac12(a^2+3+(a+1)\sqrt{a^2+2a+5})$. Equality holds when $px_1+qx_2=0$. So $\|T\|_{2\to2}=\sqrt r$.
For $x=(t,1)$, we shall show that $f(t)=\frac{1+a}{2-a}(|t|^{3/2}+1)^2-(|t-1|^3+|t+a|^3)\ge0$, so $\|T\|_{\frac32\to3}=\sqrt[3]{\frac{1+a}{2-a}}$.
For $t\ge1$, we have $f(1)=\frac{(a+1)(a+2)(a-1)^2}{2-a}>0$ and $f'(t)=\frac{3(a-1)}{2-a}(3t^2+2(a-2)t-1)+\frac{3(a+1)}{2-a}(\sqrt t-1)+(a-1)(a^2-a+2)>0$.
For $t\le-a$, we have $f(t)-f(-t)=((a-t)^3-(1-t)^3)+((t+a)^3-(t+1)^3)>0$.
For $-a<t<1$, we have $$\begin{aligned}f(t)&=\textstyle\frac{1+a}{2-a}(|t|^{3/2}+1)^2-(1-t)^3-(t+a)^3\\&=\textstyle\frac{1+a}{2-a}(|t|-\sqrt{|t|}+a-1)^2(|t|+2\sqrt{|t|}+a-1)+3(a^2-1)(|t|-t)\ge0.\end{aligned}$$ Equality holds when $t=\frac12(3-2a\pm\sqrt{5-4a})$.
Therefore $$\begin{aligned}\|T\|_{\infty\to1}\|T\|_{\frac32\to3}^3-\|T\|_{2\to2}^4&=a+1+\tfrac{1+a}{2-a}-\tfrac14(a^2+3+(a+1)\sqrt{a^2+2a+5})^2\\&<\tfrac{21}4-4(1+\sqrt2)^2<0\end{aligned}$$ while Riesz–Thorin says this is $\ge0$.
I wrote this example in my notes a few years ago but I don't remember where it came from.