3
$\begingroup$

Does the Riesz-Thorin interpolation theorem hold for real-linear operators?

The standard proof uses complex linearity, but maybe another proof avoids the assumption of complex-linearity?

$\endgroup$
4
  • $\begingroup$ What is the problem. You can complexify a real-linear operator. Perhaps the non-obvious (though true) fact is that the complexification does not change the $L^p$-norm. $\endgroup$ Commented Jul 15, 2020 at 15:15
  • 2
    $\begingroup$ The norm of the complexification can change if the operator maps $L^p$ to $L^q$ with $q<p$. When such a situation occurs one needs a constant (2 suffices) in the real Riesz-Thorin, I guess. $\endgroup$ Commented Jul 15, 2020 at 15:39
  • $\begingroup$ @Denis Serre. Assume that $Tf(z)= \int_U (A(z,w) f(z)+B(z,w) \overline{f(z)})dudv, w=u+iv, z=x+i y$, $U$ is the unit disk. This operator is real-linear, but the function $f:U\to U$ need not be real. So what is the complexification of this operator. $A$ and $B$ are certain kernels? $\endgroup$ Commented Jul 18, 2020 at 14:50
  • $\begingroup$ @Lira. You should not focus on the fact that $f$ is a complex-valued function. Your operator is real-linear, so just write it in terms of a pair of unctions $(g,h)$ (real and imaginary parts). Then you may complexify :). $\endgroup$ Commented Jul 18, 2020 at 20:18

1 Answer 1

2
$\begingroup$

No.

Let $T:\mathbb R^2\to\mathbb R^2$ be $T(x_1,x_2)=(x_1-x_2,x_1+ax_2)$, where $1<a<\frac54$.

For $\|x\|_\infty=\|y\|_\infty=1$, we have $$\begin{aligned}\langle Tx,y\rangle&=|(x_1-x_2)y_1+(x_1+ax_2)y_2|\\&\le|y_1+y_2|+|y_1-y_2|+a-1\\&\le a+1\end{aligned}$$ where equality holds when $x=y=(1,1)$. So $\|T\|_{\infty\to1}=a+1$.

We have $$\begin{aligned}\|Tx\|_2^2&=(x_1-x_2)^2+(x_1+ax_2)^2\\&=r\|x\|_2^2-(px_1+qx_2)^2\\&\le r\|x\|_2^2\end{aligned}$$ where $p^2-q^2=a^2-1$, $pq=1-a$, and $r=p^2+2$. Solving the quadratic equation, we have $r=\frac12(a^2+3+(a+1)\sqrt{a^2+2a+5})$. Equality holds when $px_1+qx_2=0$. So $\|T\|_{2\to2}=\sqrt r$.

For $x=(t,1)$, we shall show that $f(t)=\frac{1+a}{2-a}(|t|^{3/2}+1)^2-(|t-1|^3+|t+a|^3)\ge0$, so $\|T\|_{\frac32\to3}=\sqrt[3]{\frac{1+a}{2-a}}$.

  • For $t\ge1$, we have $f(1)=\frac{(a+1)(a+2)(a-1)^2}{2-a}>0$ and $f'(t)=\frac{3(a-1)}{2-a}(3t^2+2(a-2)t-1)+\frac{3(a+1)}{2-a}(\sqrt t-1)+(a-1)(a^2-a+2)>0$.

  • For $t\le-a$, we have $f(t)-f(-t)=((a-t)^3-(1-t)^3)+((t+a)^3-(t+1)^3)>0$.

  • For $-a<t<1$, we have $$\begin{aligned}f(t)&=\textstyle\frac{1+a}{2-a}(|t|^{3/2}+1)^2-(1-t)^3-(t+a)^3\\&=\textstyle\frac{1+a}{2-a}(|t|-\sqrt{|t|}+a-1)^2(|t|+2\sqrt{|t|}+a-1)+3(a^2-1)(|t|-t)\ge0.\end{aligned}$$ Equality holds when $t=\frac12(3-2a\pm\sqrt{5-4a})$.

Therefore $$\begin{aligned}\|T\|_{\infty\to1}\|T\|_{\frac32\to3}^3-\|T\|_{2\to2}^4&=a+1+\tfrac{1+a}{2-a}-\tfrac14(a^2+3+(a+1)\sqrt{a^2+2a+5})^2\\&<\tfrac{21}4-4(1+\sqrt2)^2<0\end{aligned}$$ while Riesz–Thorin says this is $\ge0$.

I wrote this example in my notes a few years ago but I don't remember where it came from.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.