0
$\begingroup$

I have been reading through this paper (https://ieeexplore.ieee.org/document/7995739) where I am stuck with this particular LMI. If you are familiar with control theory, the author is trying to find conditions that would satisfy

\begin{equation} \mathcal{W} \triangleq \dot{V}(\xi) + \vert \vert \xi \vert \vert^2 - \mu \vert \vert \eta \vert \vert^2 \leq 0 \end{equation} where $V(\xi) = \xi^T \hspace{1mm} \mathbb{Q} \hspace{1mm} \xi $ is the Lyapunov function.

Substituting for the state dynamics (assuming I have taken the derivative properly), $\dot{\xi}$, we get \begin{align} \mathcal{W} &= 2 \hspace{0.1cm} \xi^T \mathbb{Q} \left[\begin{pmatrix} \mathbb{A}_{\overline{K}} & \overline{B} \overline{K} \tilde{B}\\ \mathcal{O} & \mathbb{A}_{L} \end{pmatrix} \hspace{0.1cm} \xi + \begin{pmatrix} D_{11} & D_{12}\\ D_{21} & D_{22} \end{pmatrix} \hspace{0.1cm} \eta \right] + \vert \vert \xi \vert \vert^2 - \mu \vert \vert \eta \vert \vert^2\\ &= \left(2 \hspace{0.1cm} \xi^T \hspace{0.1cm} \left[\mathbb{Q} \left\{ \begin{pmatrix} \mathbb{A}_{\overline{K}} & \mathcal{O}\\ \mathcal{O} & \mathbb{A}_{L} \end{pmatrix} + \begin{pmatrix} \mathcal{O} & \overline{B} \overline{K} \tilde{B}\\ \mathcal{O} & \mathcal{O} \end{pmatrix} \right\} \right] \hspace{0.1cm} \xi + \xi^T \hspace{0.1cm} \xi \right)+ 2 \hspace{0.1cm} \xi^T \hspace{0.1cm} \mathbb{Q} \hspace{0.1cm} \begin{pmatrix} D_{11} & D_{12}\\ D_{21} & D_{22} \end{pmatrix} \hspace{0.1cm} \eta - \mu \hspace{0.1cm} \eta^T \hspace{0.1cm} \eta \end{align}

The final form that the paper skips to and that I am trying to attain is:

\begin{equation} \mathcal{W} = \begin{pmatrix} \xi\\ \eta \end{pmatrix}^T \hspace{0.1cm} \Pi \hspace{0.1cm} \begin{pmatrix} \xi\\ \eta \end{pmatrix} \end{equation}

with $\Pi = \begin{pmatrix} \begin{pmatrix} \mathbb{A}_{\overline{K}} & \mathcal{O}\\ \mathcal{O} & \mathbb{A}_{L} \end{pmatrix}^T \mathbb{Q} + \mathbb{Q} \begin{pmatrix} \mathbb{A}_{\overline{K}} & \mathcal{O}\\ \mathcal{O} & \mathbb{A}_{L} \end{pmatrix} + \mathbb{I}_{2n} & \mathbb{Q} \begin{pmatrix} D_{11} & D_{12}\\ D_{21} & D_{22} \end{pmatrix}\\ \begin{pmatrix} D_{11} & D_{12}\\ D_{21} & D_{22} \end{pmatrix}^T \mathbb{Q}^T & -\mu \mathbb{I}_{q} \end{pmatrix} + \begin{pmatrix} \mathbb{Z}^{-1} \overline{B} \overline{K}\\ \mathcal{O}\\ \mathcal{O} \end{pmatrix} \begin{pmatrix} \mathcal{O} & \tilde{B} & \mathcal{O} \end{pmatrix} + \begin{pmatrix} \mathcal{O}\\ \tilde{B}^T\\ \mathcal{O} \end{pmatrix} \begin{pmatrix} \left(\overline{B} \overline{K}\right)^T \mathbb{Z}^{-1} & \mathcal{O} & \mathcal{O} \end{pmatrix}$

If you expand further, you'll see that the following needs to be true for them to be equal:

  1. $\mathbb{Q} \begin{pmatrix} \mathbb{A}_{\overline{K}} & \mathcal{O}\\ \mathcal{O} & \mathbb{A}_{L} \end{pmatrix} + \mathbb{Q} \begin{pmatrix} \mathbb{A}_{\overline{K}} & \mathcal{O}\\ \mathcal{O} & \mathbb{A}_{L} \end{pmatrix}$ is the same as $\begin{pmatrix} \mathbb{A}_{\overline{K}} & \mathcal{O}\\ \mathcal{O} & \mathbb{A}_{L} \end{pmatrix}^T \mathbb{Q} + \mathbb{Q} \begin{pmatrix} \mathbb{A}_{\overline{K}} & \mathcal{O}\\ \mathcal{O} & \mathbb{A}_{L} \end{pmatrix}$

  2. Given that $\mathbb{Q} = \begin{pmatrix} \mathbb{Z}^{-1} & \mathcal{O}\\ \mathcal{O} & \mathbb{P} \end{pmatrix}$, $\mathbb{P}$ is a positive-definite matrix with matrices $\mathbb{Z}$ and $\mathbb{Q}$ being symmetric, $2 \hspace{0.1cm} \mathbb{Q} \hspace{0.1cm} \begin{pmatrix} \mathcal{O} & \overline{B} \overline{K} \tilde{B}\\ \mathcal{O} & \mathcal{O} \end{pmatrix}$ is the same as $\begin{pmatrix} \mathcal{O} & \mathbb{Z}^{-1} \hspace{1mm} \overline{B} \overline{K} \hspace{1mm} \tilde{B}\\ \tilde{B} \hspace{1mm} \left(\overline{B} \overline{K}\right)^T \mathbb{Z}^{-1} & \mathcal{O} \end{pmatrix}$

  3. $2 \hspace{0.1cm} \xi^T \hspace{0.1cm} \mathbb{Q} \hspace{0.1cm} \begin{pmatrix} D_{11} & D_{12}\\ D_{21} & D_{22} \end{pmatrix} \eta$ is the same as $\eta \hspace{0.1cm} \begin{pmatrix} D_{11} & D_{12}\\ D_{21} & D_{22} \end{pmatrix}^T \hspace{0.1cm} \mathbb{Q} \hspace{0.1cm} \xi + \xi^T \hspace{0.1cm} \mathbb{Q} \hspace{0.1cm} \begin{pmatrix} D_{11} & D_{12}\\ D_{21} & D_{22} \end{pmatrix} \eta$

The curious thing is the above three relations hold (as far as I know) only when the matrices are symmetric which in turn means the submatrices in the block matrices are symmetric but knowing the structure of these matrices, they are not. I think there is something silly I am doing and can't figure it out.

P.S. I tried to be as succinct as I could have been but I can understand if I am missing some info. Please let me know.

$\endgroup$

1 Answer 1

1
$\begingroup$

I assume $\mathcal{W}$ is a scalar. In such case it can also be written as

$$ \mathcal{W} = \frac{1}{2}\left(\mathcal{W}+\mathcal{W}^\top\right). $$

This is common practice when formulating a LMI, since it has the advantage that when you factor out $\begin{bmatrix} \zeta^\top & \mu^\top\end{bmatrix}^\top$ the $\Pi$ matrix is symmetric. Writing your initial inequality $\mathcal{W} \leq 0$ in terms of $\Pi=\Pi^\top$ allows you to also write it as the LMI $\Pi\preceq 0$.

For example for state feedback of a LTI system you have

$$ \dot{x}=A\,x+B\,u $$

and you want to find

$$ u=K\,x, \\ V(x)=x^\top P\,x, \\ P=P^\top\succ0, \\ \dot{V}(x)<0\ \forall\,x\neq0. $$

Where $\dot{V}(x)$ can be written as

$$ \dot{V}(x)=2\,x^\top P\,(A+B\,K)\,x, $$

but more commonly is written as

$$ \dot{V}(x)=x^\top\left(P\,(A+B\,K) + (A+B\,K)^\top P\right)\,x. $$

$\endgroup$
1
  • $\begingroup$ well i wasted a lot of time on this...should have gone to the basic...appreciate the answer $\endgroup$ Commented Feb 4, 2019 at 14:08

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.