3
$\begingroup$

Suppose we have an M$\times$N complex matrix $H$ and its singular value decomposition $H=U\Lambda V^*$ and an N$\times$N covariance matrix $R_s$ with its eigendecomposition $R_s = U_s\Lambda_sU_s^*$. We also have the eigendecomposition of $HR_sH^*$ as $U_A\Lambda_AU_A^*$. In my research problem setting, I know $U_A$, $H$ but not $R_s$ and $\Lambda_A$. I want to find $U_s$ using $H$ and $U_A$. I was wondering if there exists any connection between them.

$\endgroup$
5
  • $\begingroup$ When you say that you don't know $R_d$, do you mean $R_s$? (Also, does "solve $U_s$" mean "find $U_s$"?) $\endgroup$ Commented Jun 8, 2018 at 18:41
  • $\begingroup$ Yes, you are right and I have corrected my wording based on what you suggested. $\endgroup$ Commented Jun 8, 2018 at 18:51
  • $\begingroup$ @Jiawei Liu Does my answer adequately answer your question? $\endgroup$ Commented Jun 10, 2018 at 11:41
  • $\begingroup$ @Jiawei Liu Does my answer address your question? $\endgroup$ Commented Jun 12, 2018 at 10:54
  • $\begingroup$ It does address my question. Appreciate it a lot @Mark L. Stone $\endgroup$ Commented Jun 12, 2018 at 22:03

1 Answer 1

2
$\begingroup$

$U_s$ is not recoverable from $H$ and $U_A$.

Consider the following examples, one each for $M < N, M > N, M = N$. In each example, there are 2 different $R$'s, $R1$ and $R2$, having different $U_s$'s while having the same $U_A$.

MATLAB output for $M=2, N=3$ example:

>> disp(H) 1 0 0 0 2 0 >> disp(R1) 2 1 1 1 2 1 1 1 2 >> [U_s_R1,lambda_R1]=eig(R1) U_s_R1 = 0.408248290463863 0.707106781186547 0.577350269189626 0.408248290463863 -0.707106781186547 0.577350269189625 -0.816496580927726 0 0.577350269189626 lambda_R1 = 0.999999999999999 0 0 0 1.000000000000000 0 0 0 3.999999999999999 >> disp(R2) 9.999999999999929 4.999999999999965 0.984522053823275 4.999999999999965 9.999999999999929 0.984522053823275 0.984522053823275 0.984522053823275 9.999999999999929 >> [U_s_R2,lambda_R2]=eig(R2) U_s_R2 = 0.707106781186548 0.177730756491407 0.684406150028616 -0.707106781186547 0.177730756491407 0.684406150028616 0 -0.967896459542024 0.251349246280978 lambda_R2 = 4.999999999999966 0 0 0 9.638432711095330 0 0 0 15.361567288904492 >> [U_A_R1,lambda_A_R1]=eig(H*R1*H') U_A_R1 = -0.957092026489053 0.289784148688430 0.289784148688430 0.957092026489053 lambda_A_R1 = 1.394448724536011 0 0 8.605551275463990 >> [U_A_R2,lambda_A_R2]=eig(H*R2*H') U_A_R2 = -0.957092026489053 0.289784148688430 0.289784148688430 0.957092026489053 lambda_A_R2 = 6.972243622680004 0 0 43.027756377319641 

As can be seen, U_A_R1 = U_A_R2, but U_s_R1 shares only one column with U_s_R2, i.e., R1 has only one eigenvector in common with R2.


MATLAB output for $M=3, N=2$ example

>> disp(H) 1 0 0 2 1 1 >> disp(R1) 1 1 1 2 >> [U_s_R1,lambda_R1]=eig(R1) U_s_R1 = -0.850650808352040 0.525731112119133 0.525731112119133 0.850650808352040 lambda_R1 = 0.381966011250105 0 0 2.618033988749895 >> disp(R2) 10.000000000000000 2.500000000000000 2.500000000000000 10.000000000000000 >> [U_s_R2,lambda_R2]=eig(R2) U_s_R2 = -0.707106781186547 0.707106781186547 0.707106781186547 0.707106781186547 lambda_R2 = 7.500000000000000 0 0 12.500000000000000 >> [U_A_R1,lambda_A_R1]=eig(H*R1*H') U_A_R1 = 0.666666666666668 0.711452386093986 0.222240990541188 0.333333333333332 -0.551270143087020 0.764846467096310 -0.666666666666666 0.435817314550478 0.604664224089342 lambda_A_R1 = 0.000000000000002 0 0 0 0.675444679663242 0 0 0 13.324555320336762 >> [U_A_R2,lambda_A_R2]=eig(H*R2*H') U_A_R2 = 0.666666666666667 0.711452386093987 0.222240990541187 0.333333333333333 -0.551270143087020 0.764846467096309 -0.666666666666666 0.435817314550477 0.604664224089342 lambda_A_R2 = 0.000000000000005 0 0 0 13.782917548737156 0 0 0 61.217082451262840 

As can be seen, U_A_R1 = U_A_R2, but U_s_R1 doesn't share any columns with U_s_R2, i.e., R1 has no eigenvectors in common with R2.


MATLAB output for $M=2, N=2$ example

>> disp(H) 1 0 0 2 >> disp(R1) 1 1 1 2 >> [U_s_R1,lambda_R1]=eig(R1) U_s_R1 = -0.850650808352040 0.525731112119133 0.525731112119133 0.850650808352040 lambda_R1 = 0.381966011250105 0 0 2.618033988749895 >> disp(R2) 9.999999999998895 4.285714285713818 4.285714285713818 9.999999999998892 >> [U_s_R2,lambda_R2]=eig(R2) U_s_R2 = 0.707106781186547 -0.707106781186548 -0.707106781186548 -0.707106781186547 lambda_R2 = 5.714285714285076 0 0 14.285714285712711 >> [U_A_R1,lambda_A_R1]=eig(H*R1*H') U_A_R1 = -0.966499648764670 0.256667935157024 0.256667935157024 0.966499648764670 lambda_A_R1 = 0.468871125850725 0 0 8.531128874149275 >> [U_A_R2,lambda_A_R2]=eig(H*R2*H') U_A_R2 = -0.966499648764669 0.256667935157025 0.256667935157025 0.966499648764669 lambda_A_R2 = 7.723733396502248 0 0 42.276266603492211 

As can be seen, U_A_R1 = U_A_R2, but U_s_R1 doesn't share any columns with U_s_R2, i.e., R1 has no eigenvectors in common with R2.

$\endgroup$
1
  • $\begingroup$ I think your answer makes total sense to me, Mark! Thanks for your input! $\endgroup$ Commented Jun 12, 2018 at 22:00

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.