11
$\begingroup$

Is there a closed form expression for the determinant of the $n\times n$ Vandermonde-type matrix

$$A = \left(\begin{array}{} 1&g_1 & x_1&g_1 x_1 & x_1^2&g_1 x_1^2 & \cdots & x_1^{n/2-1} & g_1 x_1^{n/2-1} \\ 1&g_2 & x_2&g_2 x_2 & x_2^2&g_2 x_2^2 & \cdots & x_2^{n/2-1} & g_2 x_2^{n/2-1} \\ \vdots &\vdots &\vdots &\vdots &\vdots & \vdots & \ddots & \vdots & \vdots \\ 1&g_n & x_n&g_n x_n & x_n^2&g_n x_n^2 & \cdots & x_n^{n/2-1} & g_n x_n^{n/2-1} \end{array}\right), $$

with $n$ even? The $g_i$ can be assumed to be functions of $x_i$: $g_i\equiv g(x_i)$. Furthermore, it might be helpful to assume the $x_i$ to be the complex roots of a known polynomial of order $n$.

$\endgroup$
4
  • 1
    $\begingroup$ Aren't $n$ complex numbers always the roots of a polynomial of degree $n$? $\endgroup$ Commented Apr 15, 2016 at 14:40
  • 1
    $\begingroup$ True. Assume that all we know about the $x_i$ is the mentioned polynomial. $\endgroup$ Commented Apr 15, 2016 at 14:48
  • $\begingroup$ Dear. have you found a solution to your question? Thanks! $\endgroup$ Commented Jun 25, 2019 at 20:16
  • 1
    $\begingroup$ Yes, see arxiv.org/abs/2103.10776 for a representation of the determinant using Hankel determinants. /Fred $\endgroup$ Commented Jul 13, 2022 at 20:01

1 Answer 1

3
$\begingroup$

In Appendix B of https://arxiv.org/abs/2103.10776 (J. Phys. A: Math. Theor. 54, 375201 (2021)), I derived a transformation of the block Vandermonde determinant above to a Hankel matrix, which in my case dramatically simplified the problem. This is a block-matrix generalization of the well known "Vandermonde factorization of a Hankel matrix":

Let $\mathbf V_{\!\vec{x}}$ be a general Vandermonde matrix \begin{equation} \mathbf V_{\!\vec{x}} \equiv \left[\vphantom{A_{2}^{2}}x_{\mu}^{j}\right]_{\mu=1,\,j=0}^{M\hspace{1.5ex}M-1}\label{eq:V_x}\tag{1} \end{equation} and let \begin{equation} P_{\vec{x}}(x)=\prod_{\mu=1}^{M}(x-x_{\mu})=\sum_{n=0}^{M}b_{n}x^{n},\label{eq:P_x(x)}\tag{2} \end{equation} be the related characteristic polynomial in $x$, where $b_{M}=1$ by construction. If we further let \begin{align} \mathbf D_{\vec{x}} & \equiv \left[\frac{\delta_{\mu\nu}}{P_{\vec{x}}'(x_{\mu})}\right]_{\mu,\nu=1}^{M}, & \mathbf H_{\vec{x}}^{-1} & \equiv\left[\vphantom{A_{2}^{2}}b_{i+j+1}\right]_{i,j=0}^{M-1},\tag{3} \end{align} then \begin{align} \mathbf V^T_{\!\vec{x}}\,\mathbf D_{\vec{x}}\mathbf V_{\!\vec{x}} & = \mathbf H_{\vec{x}}, & {\det}^{2}\,\mathbf V_{\!\vec{x}}\det\mathbf D_{\vec{x}} & =1.\label{eq:Vandermonde_Hankel_Identity}\tag{4} \end{align} While $\mathbf H_{\vec{x}}^{-1}$ is upper anti-triangular, $\mathbf H_{\vec{x}}$ itself is lower anti-triangular, e.g. for $M=4$, \begin{equation} \mathbf H_{\vec{x}}^{-1}=\begin{pmatrix}b_{1} & b_{2} & b_{3} & 1\\ b_{2} & b_{3} & 1 & 0\\ b_{3} & 1 & 0 & 0\\ 1 & 0 & 0 & 0 \end{pmatrix}\quad\Rightarrow\quad\mathbf H_{\vec{x}}=\begin{pmatrix}0 & 0 & 0 & 1\\ 0 & 0 & 1 & \tilde{b}_{5}\\ 0 & 1 & \tilde{b}_{5} & \tilde{b}_{6}\\ 1 & \tilde{b}_{5} & \tilde{b}_{6} & \tilde{b}_{7} \end{pmatrix},\label{eq:H_x_example}\tag{5} \end{equation} with $\tilde{b}_{n}=\sum_{\mu}x_{\mu}^{n-1}/P_{\vec{x}}'(x_{\mu})$.

As a side note, both $\tilde{b}_{n}=s_{(n-M)}(\boldsymbol{x})$ and $b_{n}=(-1)^{n}s_{\boldsymbol{1}_{M-n}}(\boldsymbol{x})$ are Schur polynomials.

We now turn to the block matrix version:

Let $\boldsymbol{\mathcal{V}}_{\vec{g},\vec{x}}$ be the generalized $1\times B$ block Vandermonde matrix with $M\times N$ blocks \begin{equation} \boldsymbol{\mathcal{V}}_{\vec{g},\vec{x}} \equiv \left[\vphantom{A_{2}^{2}}g_{\mu}^{b}\,x_{\mu}^{n}\right]_{b=0;\,\,\mu=1,\,n=0}^{B-1\,M\hspace{2ex}N-1} = \left[\vphantom{A_{2}^{2}}\mathbf G^{b}\,\mathbf V_{\!\vec{x}}\right]_{b=0}^{B-1},\tag{6} \end{equation} with \begin{equation} \mathbf V_{\!\vec{x}} \equiv \left[\vphantom{A_{2}^{2}}x_{\mu}^{n}\right]_{\mu=1,\,n=0}^{M\hspace{1.5ex}N-1},\qquad \mathbf G \equiv \left[\vphantom{A_{2}^{2}}\delta_{\mu\nu}\,g_{\mu}\right]_{\mu,\nu=1}^{M}.\tag{7} \end{equation} As an example, for $M=4$, $B=3$ and $N=3$ we have \begin{equation} \boldsymbol{\mathcal{V}}_{\vec{g},\vec{x}} = \left[\begin{array}{ccc|ccc|ccc} 1 & x_{1} & x_{1}^{2} & g_{1} & g_{1}x_{1} & g_{1}x_{1}^{2} & g_{1}^{2} & g_{1}^{2}x_{1} & g_{1}^{2}x_{1}^{2}\\ 1 & x_{2} & x_{2}^{2} & g_{2} & g_{2}x_{2} & g_{2}x_{2}^{2} & g_{2}^{2} & g_{2}^{2}x_{2} & g_{2}^{2}x_{2}^{2}\\ 1 & x_{3} & x_{3}^{2} & g_{3} & g_{3}x_{3} & g_{3}x_{3}^{2} & g_{3}^{2} & g_{3}^{2}x_{3} & g_{3}^{2}x_{3}^{2}\\ 1 & x_{4} & x_{4}^{2} & g_{4} & g_{4}x_{4} & g_{4}x_{4}^{2} & g_{4}^{2} & g_{4}^{2}x_{4} & g_{4}^{2}x_{4}^{2} \end{array}\right]. \end{equation} Furthermore, let $\mathbf D$ be an arbitrary $M\times M$ diagonal matrix. Then, the $B\times B$ block Hankel matrix with $N\times N$ blocks \begin{equation} \boldsymbol{\mathcal{H}}_{\vec{g},\vec{x}} \equiv \left[\sum_{\mu=1}^{M}d_{\mu}g_{\mu}^{a+b}\,x_{\mu}^{m+n}\right]_{a,b=0;\,m,n=0}^{B-1\;\;N-1} = \left[\mathbf V^T_{\!\vec{x}}\,\mathbf D\,\mathbf G^{a+b}\,\mathbf V_{\!\vec{x}}\right]_{a,b=0}^{B-1}\tag{8} \end{equation} trivially fulfills the identity \begin{equation} \boldsymbol{\mathcal{H}}_{\vec{g},\vec{x}} = \boldsymbol{\mathcal{V}}^T_{\vec{g},\vec{x}} \, \mathbf D \, \boldsymbol{\mathcal{V}}_{\vec{g},\vec{x}}.\tag{9} \end{equation} Note that the upper left block $\hat{\mathbf H}_{0} \equiv (\boldsymbol{\mathcal{H}}_{\vec{g},\vec{x}})_{0,0} = \mathbf V^T_{\!\vec{x}}\,\mathbf D\,\mathbf V_{\!\vec{x}}$ is free of $g_{\mu}$ and is therefore a usual Vandermonde product in $x_{\mu}$. Consequently, if the matrix $\mathbf D$ is set to the diagonal matrix $\mathbf D_{\vec{x}}$ containing the reciprocal first derivatives of the characteristic polynomial $P_{\vec{x}}(x)=\prod_{\mu=1}^M(x-x_\mu)$, \begin{equation} \mathbf D_{\vec{x}} \equiv \left[\frac{\delta_{\mu\nu}}{P_{\vec{x}}'(x_{\mu})}\right]_{\mu,\nu=1}^{M},\tag{10} \end{equation} and if additionally $M\geq2N$, then $\hat{\mathbf H}_{0}=\mathbf 0$ vanishes identically.

For the problem above, $B=2$ and $N=M/2$, such that \begin{equation} \mathbf A^T \mathbf D_{\vec{x}}\mathbf A = \boldsymbol{\mathcal{H}}_{\vec{g},\vec{x}} = \begin{bmatrix} \mathbf 0 & \hat{\mathbf H}_{1} \\ \hat{\mathbf H}_{1} & \hat{\mathbf H}_{2} \end{bmatrix}.\tag{11} \end{equation}

The desired determinant $\det \mathbf A$ therefore fulfills \begin{equation} \det(\mathbf A^T \mathbf D_{\vec{x}} \mathbf A) = {\det}^{2}\,\mathbf A\det\mathbf D_{\vec{x}} = \det \boldsymbol{\mathcal{H}}_{\vec{g},\vec{x}} = {\det}^{2}\,\hat{\mathbf H}_{1}.\tag{12} \end{equation}

For further details, see https://arxiv.org/abs/2103.10776.

$\endgroup$
2
  • $\begingroup$ Can you please developp why $\hat{H}_0=0$ ? To me, it appears (based on the provided identity) than even its determinant is non zero. What am I missing here ? $\endgroup$ Commented Jan 20, 2023 at 17:24
  • 1
    $\begingroup$ $\hat{\mathbf H}_{0}=\mathbf 0$ for the same reason as in the non-block matrix case in Eq. (5), where the upper left elements of $\mathbf H_\vec x$ also vanish. You can verify it by direct computation. $\endgroup$ Commented Jan 22, 2023 at 12:41

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.