PaddlePaddle Cloud is a combination of PaddlePaddle and Kubernetes. It supports fault-recoverable and fault-tolerant large-scaled distributed deep learning. We can deploy it on public cloud and on-premise clusters.
PaddlePaddle Cloud includes the following components:
- paddlectl: A command-line tool that talks to paddlecloud and paddle-fs.
- paddlecloud: An HTTP server that exposes Kubernetes as a Web service.
- paddle-fs: An HTTP server that exposes the CephFS distributed filesystem as a Web service.
- EDL (elastic deep learning): A Kubernetes controller that supports elastic scheduling of deep learning jobs and other jobs.
- Fault-tolerant distributed deep learning: This part is in the Paddle repo.
- Build PaddlePaddle Cloud
- Deploy PaddlePaddle Cloud
- Elastic Deep Learning using EDL
- PaddlePaddle Cloud on Minikube
. ├── demo: distributed version of https://github.com/PaddlePaddle/book programs ├── doc: documents ├── docker: scripts to build Docker image to run PaddlePaddle distributed ├── go │   ├── cmd │   │   ├── edl: entry of EDL controller binary │   │   ├── paddlecloud: the command line client of PaddlePaddle Cloud (will be deprecated) │   │   ├── paddlectl: the command line client of PaddlePaddle Cloud │   │   └── pfsserver: entry of PaddleFS binary │   ├── edl: EDL implementation │   ├── filemanager: PaddleFS implementation │   ├── paddlecloud: command line client implement (will be deprecated) │   ├── paddlectl: command line client implement │   ├── scripts: scripts for Go code generation ├── k8s: YAML files to create different components of PaddlePaddle Cloud │   ├── edl: TPR definition and EDL controller for TraningJob resource │   │   ├── autoscale_job: A sample TrainingJob that can scale │   │   └── autoscale_load: A sample cluster job demonstrating a common workload │   ├── minikube: YAML files to deploy on local mini-kube environment │   └── raw_job: A demo job demonstrates how to run PaddlePaddle jobs in cluster └── python: PaddlePaddle Cloud REST API server