Paper: aLLoyM: A Large Language Model for Alloy Phase Diagram Prediction
Pretrained model: Playingyoyo/aLLoyM
Dataset: Playingyoyo/aLLoyM-dataset
(using unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit)
-
GPU Requirement Use a GPU with at least 8 GB VRAM (tested on NVIDIA A100 80 GB).
-
Environment Setup
- Run
setup_llm_env.sh(tested with CUDA 12.4), or - Manually install the required Python packages listed in the script.
- Run
-
Hugging Face Authentication
- Create a Hugging Face account.
- Paste your personal access token into
.env.tokens.
-
(Optional) Weights & Biases Tracking
- Create a wandb account.
- Add your wandb token to
.env.tokensto enable experiment tracking.
(or demo datasets)
-
Move into your project folder (e.g., the
demo/directory), create a new directorymistral/, and move into it. Also make a directory for slurm logging:cd demo/ mkdir mistral/ cd mistral/ mkdir logs/
-
Run fine-tuning:
bash ../../src/run_with_GPU.sh ../../src/mistral/finetune.py -
Run inference:
bash ../../src/run_with_GPU.sh ../../src/generate.py
run_with_GPU.sh automatically activates the .env virtual environment. For long training or inference sessions, use tmux or screen to keep the process running in the background.
-
Prepare Your Data
-
Place your
.datfiles underdataset/CPDDB_data/. -
Requirements:
- Phase names must appear in
phase_listinconfig.py. - The data format should match
demo/example.dat.
- Phase names must appear in
-
-
Run the Complete Data Processing Pipeline
chmod +x run_all.sh ./run_all.sh