MTEB: Massive Text Embedding Benchmark
- Updated
Oct 7, 2025 - Python
MTEB: Massive Text Embedding Benchmark
A Heterogeneous Benchmark for Information Retrieval. Easy to use, evaluate your models across 15+ diverse IR datasets.
TextReducer - A Tool for Summarization and Information Extraction
文本相似度,语义向量,文本向量,text-similarity,similarity, sentence-similarity,BERT,SimCSE,BERT-Whitening,Sentence-BERT, PromCSE, SBERT
Using machine learning on your anki collection to enhance the scheduling via semantic clustering and semantic similarity
Heterogenous, Task- and Domain-Specific Benchmark for Unsupervised Sentence Embeddings used in the TSDAE paper: https://arxiv.org/abs/2104.06979.
Interactive tree-maps with SBERT & Hierarchical Clustering (HAC)
Backend code for GitHub Recommendation Extension
Semantic emoji finder. Python/dash UI. Uses sentence transformer embeddings and duckdb
A tool for performing semantic search within pdf documents leveraging sentence transformers.
The backed for an anime recommender system that combines multiple methods to provide a variety of recommendations to users based on different similarity metrics
Match celebrity users with their respective tweets by making use of Semantic Textual Similarity on over 900+ celebrity users' 2.5 million+ scraped tweets utilizing SBERT, streamlit, tweepy and FastAPI
Package to calculate the similarity score between two sentences
Generative AI & Recommendation Engine --- Firat University / Faculty of Technology / Software Engineering / Final Project
📃Train text similarity model based on Sentence-BERT | 基于Sentence-BERT训练自己的文本相似度模型
Плагин для SmartApp Framework, осуществляющий векторизацию (получение embedding'ов) текстов с помощью различных моделей
CV Embed is an AI resume analyzer that matches candidates with job descriptions using SBERT/GloVe/Doc2Vec models. Calculates compatibility scores, suggests top job matches, and generates real opportunities. Supports PDF/DOCX uploads with Flask backend and Gemini AI integration.
Generación de contestaciones a partir de la aproximación de sus preguntas
Linux manual search shell with natural language
Add a description, image, and links to the sbert topic page so that developers can more easily learn about it.
To associate your repository with the sbert topic, visit your repo's landing page and select "manage topics."