Mathematical Optimization in Julia. Local, global, gradient-based and derivative-free. Linear, Quadratic, Convex, Mixed-Integer, and Nonlinear Optimization in one simple, fast, and differentiable interface.
- Updated
Dec 15, 2025 - Julia
Mathematical Optimization in Julia. Local, global, gradient-based and derivative-free. Linear, Quadratic, Convex, Mixed-Integer, and Nonlinear Optimization in one simple, fast, and differentiable interface.
A common interface for quadrature and numerical integration for the SciML scientific machine learning organization
A differentiable simulator for scientific machine learning (SciML) with N-body problems, including astrophysical and molecular dynamics
Automates steady and unsteady adjoints (general solvers and ODEs respectively). Forward and reverse mode algorithmic differentiation around implicit functions (not propagating AD through), as well as custom rules to allow for mixed-mode AD or calling external (non-AD compatible) functions within an AD chain.
Add a description, image, and links to the algorithmic-differentiation topic page so that developers can more easily learn about it.
To associate your repository with the algorithmic-differentiation topic, visit your repo's landing page and select "manage topics."