Skip to content

sumerc/yappi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

yappi

Yappi

A tracing profiler that is multithreading, asyncio and gevent aware.

FreePalestine.Dev

From the river to the sea, Palestine will be free

Highlights

  • Fast: Yappi is fast. It is completely written in C and lots of love and care went into making it fast.
  • Unique: Yappi supports multithreaded, asyncio and gevent profiling. Tagging/filtering multiple profiler results has interesting use cases.
  • Intuitive: Profiler can be started/stopped and results can be obtained from any time and any thread.
  • Standards Compliant: Profiler results can be saved in callgrind or pstat formats.
  • Rich in Feature set: Profiler results can show either Wall Time or actual CPU Time and can be aggregated from different sessions. Various flags are defined for filtering and sorting profiler results.
  • Robust: Yappi has been around for years.

Motivation

CPython standard distribution comes with three deterministic profilers. cProfile, Profile and hotshot. cProfile is implemented as a C module based on lsprof, Profile is in pure Python and hotshot can be seen as a small subset of a cProfile. The major issue is that all of these profilers lack support for multi-threaded programs and CPU time.

If you want to profile a multi-threaded application, you must give an entry point to these profilers and then maybe merge the outputs. None of these profilers are designed to work on long-running multi-threaded applications. It is also not possible to profile an application that start/stop/retrieve traces on the fly with these profilers.

Now fast forwarding to 2019: With the latest improvements on asyncio library and asynchronous frameworks, most of the current profilers lacks the ability to show correct wall/cpu time or even call count information per-coroutine. Thus we need a different kind of approach to profile asynchronous code. Yappi, with v1.2 introduces the concept of coroutine profiling. With coroutine-profiling, you should be able to profile correct wall/cpu time and call count of your coroutine. (including the time spent in context switches, too). You can see details here.

Installation

Can be installed via PyPI

$ pip install yappi 

OR from the source directly.

$ pip install git+https://github.com/sumerc/yappi#egg=yappi 

Examples

A simple example:

import yappi def a(): for _ in range(10000000): # do something CPU heavy pass yappi.set_clock_type("cpu") # Use set_clock_type("wall") for wall time yappi.start() a() yappi.get_func_stats().print_all() yappi.get_thread_stats().print_all() '''  Clock type: CPU Ordered by: totaltime, desc  name ncall tsub ttot tavg  doc.py:5 a 1 0.117907 0.117907 0.117907  name id tid ttot scnt  _MainThread 0 139867147315008 0.118297 1 '''

Profile a multithreaded application:

You can profile a multithreaded application via Yappi and can easily retrieve per-thread profile information by filtering on ctx_id with get_func_stats API.

import yappi import time import threading _NTHREAD = 3 def _work(n): time.sleep(n * 0.1) yappi.start() threads = [] # generate _NTHREAD threads for i in range(_NTHREAD): t = threading.Thread(target=_work, args=(i + 1, )) t.start() threads.append(t) # wait all threads to finish for t in threads: t.join() yappi.stop() # retrieve thread stats by their thread id (given by yappi) threads = yappi.get_thread_stats() for thread in threads: print( "Function stats for (%s) (%d)" % (thread.name, thread.id) ) # it is the Thread.__class__.__name__ yappi.get_func_stats(ctx_id=thread.id).print_all() ''' Function stats for (Thread) (3)  name ncall tsub ttot tavg ..hon3.7/threading.py:859 Thread.run 1 0.000017 0.000062 0.000062 doc3.py:8 _work 1 0.000012 0.000045 0.000045  Function stats for (Thread) (2)  name ncall tsub ttot tavg ..hon3.7/threading.py:859 Thread.run 1 0.000017 0.000065 0.000065 doc3.py:8 _work 1 0.000010 0.000048 0.000048   Function stats for (Thread) (1)  name ncall tsub ttot tavg ..hon3.7/threading.py:859 Thread.run 1 0.000010 0.000043 0.000043 doc3.py:8 _work 1 0.000006 0.000033 0.000033 '''

Different ways to filter/sort stats:

You can use filter_callback on get_func_stats API to filter on functions, modules or whatever available in YFuncStat object.

import package_a import yappi import sys def a(): pass def b(): pass yappi.start() a() b() package_a.a() yappi.stop() # filter by module object current_module = sys.modules[__name__] stats = yappi.get_func_stats( filter_callback=lambda x: yappi.module_matches(x, [current_module]) ) # x is a yappi.YFuncStat object stats.sort("name", "desc").print_all() ''' Clock type: CPU Ordered by: name, desc  name ncall tsub ttot tavg doc2.py:10 b 1 0.000001 0.000001 0.000001 doc2.py:6 a 1 0.000001 0.000001 0.000001 ''' # filter by function object stats = yappi.get_func_stats( filter_callback=lambda x: yappi.func_matches(x, [a, b]) ).print_all() ''' name ncall tsub ttot tavg doc2.py:6 a 1 0.000001 0.000001 0.000001 doc2.py:10 b 1 0.000001 0.000001 0.000001 ''' # filter by module name stats = yappi.get_func_stats(filter_callback=lambda x: 'package_a' in x.module ).print_all() ''' name ncall tsub ttot tavg package_a/__init__.py:1 a 1 0.000001 0.000001 0.000001 ''' # filter by function name stats = yappi.get_func_stats(filter_callback=lambda x: 'a' in x.name ).print_all() ''' name ncall tsub ttot tavg doc2.py:6 a 1 0.000001 0.000001 0.000001 package_a/__init__.py:1 a 1 0.000001 0.000001 0.000001 '''

Profile an asyncio application:

You can see that coroutine wall-time's are correctly profiled.

import asyncio import yappi async def foo(): await asyncio.sleep(1.0) await baz() await asyncio.sleep(0.5) async def bar(): await asyncio.sleep(2.0) async def baz(): await asyncio.sleep(1.0) yappi.set_clock_type("WALL") with yappi.run(): asyncio.run(foo()) asyncio.run(bar()) yappi.get_func_stats().print_all() ''' Clock type: WALL Ordered by: totaltime, desc  name ncall tsub ttot tavg  doc4.py:5 foo 1 0.000030 2.503808 2.503808 doc4.py:11 bar 1 0.000012 2.002492 2.002492 doc4.py:15 baz 1 0.000013 1.001397 1.001397 '''

Profile a gevent application:

You can use yappi to profile greenlet applications now!

import yappi from greenlet import greenlet import time class GreenletA(greenlet): def run(self): time.sleep(1) yappi.set_context_backend("greenlet") yappi.set_clock_type("wall") yappi.start(builtins=True) a = GreenletA() a.switch() yappi.stop() yappi.get_func_stats().print_all() ''' name ncall tsub ttot tavg tests/test_random.py:6 GreenletA.run 1 0.000007 1.000494 1.000494 time.sleep 1 1.000487 1.000487 1.000487 '''

Documentation

Related Talks

Special thanks to A.Jesse Jiryu Davis:

PyCharm Integration

Yappi is the default profiler in PyCharm. If you have Yappi installed, PyCharm will use it. See the official documentation for more details.