Ref - "https://pkg.go.dev/std"
- golang
- Ref - "https://pkg.go.dev/std"
- Go Cheat Sheet
- Index
- Basic Syntax
- Concurrency
- Snippets
Credits - "https://github.com/a8m"
Most example code taken from A Tour of Go, which is an excellent introduction to Go. If you're new to Go, do that tour. Seriously.
- Imperative language
- Statically typed
- Syntax tokens similar to C (but less parentheses and no semicolons) and the structure to Oberon-2
- Compiles to native code (no JVM)
- No classes, but structs with methods
- Interfaces
- No implementation inheritance. There's type embedding, though.
- Functions are first class citizens
- Functions can return multiple values
- Has closures
- Pointers, but not pointer arithmetic
- Built-in concurrency primitives: Goroutines and Channels
File hello.go
:
package main import "fmt" func main() { fmt.Println("Hello Go") }
$ go run hello.go
Operator | Description |
---|---|
+ | addition |
- | subtraction |
* | multiplication |
/ | quotient |
% | remainder |
& | bitwise and |
| | bitwise or |
^ | bitwise xor |
&^ | bit clear (and not) |
<< | left shift |
>> | right shift |
Operator | Description |
---|---|
== | equal |
!= | not equal |
< | less than |
<= | less than or equal |
> | greater than |
>= | greater than or equal |
Operator | Description |
---|---|
&& | logical and |
|| | logical or |
! | logical not |
Operator | Description |
---|---|
& | address of / create pointer |
* | dereference pointer |
<- | send / receive operator (see 'Channels' below) |
Type goes after identifier!
var foo int // declaration without initialization var foo int = 42 // declaration with initialization var foo, bar int = 42, 1302 // declare and init multiple vars at once var foo = 42 // type omitted, will be inferred foo := 42 // shorthand, only in func bodies, omit var keyword, type is always implicit const constant = "This is a constant" // iota can be used for incrementing numbers, starting from 0 const ( _ = iota a b c = 1 << iota d ) fmt.Println(a, b) // 1 2 (0 is skipped) fmt.Println(c, d) // 8 16 (2^3, 2^4)
// a simple function func functionName() {} // function with parameters (again, types go after identifiers) func functionName(param1 string, param2 int) {} // multiple parameters of the same type func functionName(param1, param2 int) {} // return type declaration func functionName() int { return 42 } // Can return multiple values at once func returnMulti() (int, string) { return 42, "foobar" } var x, str = returnMulti() // Return multiple named results simply by return func returnMulti2() (n int, s string) { n = 42 s = "foobar" // n and s will be returned return } var x, str = returnMulti2()
func main() { // assign a function to a name add := func(a, b int) int { return a + b } // use the name to call the function fmt.Println(add(3, 4)) } // Closures, lexically scoped: Functions can access values that were // in scope when defining the function func scope() func() int{ outer_var := 2 foo := func() int { return outer_var} return foo } func another_scope() func() int{ // won't compile because outer_var and foo not defined in this scope outer_var = 444 return foo } // Closures func outer() (func() int, int) { outer_var := 2 inner := func() int { outer_var += 99 // outer_var from outer scope is mutated. return outer_var } inner() return inner, outer_var // return inner func and mutated outer_var 101 }
func main() { fmt.Println(adder(1, 2, 3)) // 6 fmt.Println(adder(9, 9))// 18 nums := []int{10, 20, 30} fmt.Println(adder(nums...))// 60 } // By using ... before the type name of the last parameter you can indicate that it takes zero or more of those parameters. // The function is invoked like any other function except we can pass as many arguments as we want. func adder(args ...int) int { total := 0 for _, v := range args { // Iterates over the arguments whatever the number. total += v } return total }
bool string int int8 int16 int32 int64 uint uint8 uint16 uint32 uint64 uintptr byte // alias for uint8 rune // alias for int32 ~= a character (Unicode code point) - very Viking float32 float64 complex64 complex128
All Go's predeclared identifiers are defined in the builtin package.
var i int = 42 var f float64 = float64(i) var u uint = uint(f) // alternative syntax i := 42 f := float64(i) u := uint(f)
- Package declaration at top of every source file
- Executables are in package
main
- Convention: package name == last name of import path (import path
math/rand
=> packagerand
) - Upper case identifier: exported (visible from other packages)
- Lower case identifier: private (not visible from other packages)
func main() { // Basic one if x > 10 { return x } else if x == 10 { return 10 } else { return -x } // You can put one statement before the condition if a := b + c; a < 42 { return a } else { return a - 42 } // Type assertion inside if var val interface{} = "foo" if str, ok := val.(string); ok { fmt.Println(str) } }
// There's only `for`, no `while`, no `until` for i := 1; i < 10; i++ { } for ; i < 10; { // while - loop } for i < 10 { // you can omit semicolons if there is only a condition } for { // you can omit the condition ~ while (true) } // use break/continue on current loop // use break/continue with label on outer loop here: for i := 0; i < 2; i++ { for j := i + 1; j < 3; j++ { if i == 0 { continue here } fmt.Println(j) if j == 2 { break } } } there: for i := 0; i < 2; i++ { for j := i + 1; j < 3; j++ { if j == 1 { continue } fmt.Println(j) if j == 2 { break there } } }
// switch statement switch operatingSystem { case "darwin": fmt.Println("Mac OS Hipster") // cases break automatically, no fallthrough by default case "linux": fmt.Println("Linux Geek") default: // Windows, BSD, ... fmt.Println("Other") } // as with for and if, you can have an assignment statement before the switch value switch os := runtime.GOOS; os { case "darwin": ... } // you can also make comparisons in switch cases number := 42 switch { case number < 42: fmt.Println("Smaller") case number == 42: fmt.Println("Equal") case number > 42: fmt.Println("Greater") } // cases can be presented in comma-separated lists var char byte = '?' switch char { case ' ', '?', '&', '=', '#', '+', '%': fmt.Println("Should escape") }
var a [10]int // declare an int array with length 10. Array length is part of the type! a[3] = 42 // set elements i := a[3] // read elements // declare and initialize var a = [2]int{1, 2} a := [2]int{1, 2} //shorthand a := [...]int{1, 2} // elipsis -> Compiler figures out array length
var a []int // declare a slice - similar to an array, but length is unspecified var a = []int {1, 2, 3, 4} // declare and initialize a slice (backed by the array given implicitly) a := []int{1, 2, 3, 4} // shorthand chars := []string{0:"a", 2:"c", 1: "b"} // ["a", "b", "c"] var b = a[lo:hi]// creates a slice (view of the array) from index lo to hi-1 var b = a[1:4]// slice from index 1 to 3 var b = a[:3]// missing low index implies 0 var b = a[3:]// missing high index implies len(a) a = append(a,17,3)// append items to slice a c := append(a,b...)// concatenate slices a and b // create a slice with make a = make([]byte, 5, 5)// first arg length, second capacity a = make([]byte, 5)// capacity is optional // create a slice from an array x := [3]string{"Лайка", "Белка", "Стрелка"} s := x[:] // a slice referencing the storage of x
len(a)
gives you the length of an array/a slice. It's a built-in function, not a attribute/method on the array.
// loop over an array/a slice for i, e := range a { // i is the index, e the element } // if you only need e: for _, e := range a { // e is the element } // ...and if you only need the index for i := range a { } // In Go pre-1.4, you'll get a compiler error if you're not using i and e. // Go 1.4 introduced a variable-free form, so that you can do this for range time.Tick(time.Second) { // do it once a sec }
m := make(map[string]int) m["key"] = 42 fmt.Println(m["key"]) delete(m, "key") elem, ok := m["key"] // test if key "key" is present and retrieve it, if so // map literal var m = map[string]Vertex{ "Bell Labs": {40.68433, -74.39967}, "Google": {37.42202, -122.08408}, } // iterate over map content for key, value := range m { }
There are no classes, only structs. Structs can have methods.
// A struct is a type. It's also a collection of fields // Declaration type Vertex struct { X, Y float64 } // Creating var v = Vertex{1, 2} var v = Vertex{X: 1, Y: 2} // Creates a struct by defining values with keys var v = []Vertex{{1,2},{5,2},{5,5}} // Initialize a slice of structs // Accessing members v.X = 4 // You can declare methods on structs. The struct you want to declare the // method on (the receiving type) comes between the the func keyword and // the method name. The struct is copied on each method call(!) func (v Vertex) Abs() float64 { return math.Sqrt(v.X*v.X + v.Y*v.Y) } // Call method v.Abs() // For mutating methods, you need to use a pointer (see below) to the Struct // as the type. With this, the struct value is not copied for the method call. func (v *Vertex) add(n float64) { v.X += n v.Y += n }
Anonymous structs: Cheaper and safer than using map[string]interface{}
.
point := struct { X, Y int }{1, 2}
p := Vertex{1, 2} // p is a Vertex q := &p // q is a pointer to a Vertex r := &Vertex{1, 2} // r is also a pointer to a Vertex // The type of a pointer to a Vertex is *Vertex var s *Vertex = new(Vertex) // new creates a pointer to a new struct instance
// interface declaration type Awesomizer interface { Awesomize() string } // types do *not* declare to implement interfaces type Foo struct {} // instead, types implicitly satisfy an interface if they implement all required methods func (foo Foo) Awesomize() string { return "Awesome!" }
There is no subclassing in Go. Instead, there is interface and struct embedding.
// ReadWriter implementations must satisfy both Reader and Writer type ReadWriter interface { Reader Writer } // Server exposes all the methods that Logger has type Server struct { Host string Port int *log.Logger } // initialize the embedded type the usual way server := &Server{"localhost", 80, log.New(...)} // methods implemented on the embedded struct are passed through server.Log(...) // calls server.Logger.Log(...) // the field name of the embedded type is its type name (in this case Logger) var logger *log.Logger = server.Logger
There is no exception handling. Instead, functions that might produce an error just declare an additional return value of type error
. This is the error
interface:
// The error built-in interface type is the conventional interface for representing an error condition, // with the nil value representing no error. type error interface { Error() string }
Here's an example:
func sqrt(x float64) (float64, error) { if x < 0 { return 0, errors.New("negative value") } return math.Sqrt(x), nil } func main() { val, err := sqrt(-1) if err != nil { // handle error fmt.Println(err) // negative value return } // All is good, use `val`. fmt.Println(val) }
Goroutines are lightweight threads (managed by Go, not OS threads). go f(a, b)
starts a new goroutine which runs f
(given f
is a function).
// just a function (which can be later started as a goroutine) func doStuff(s string) { } func main() { // using a named function in a goroutine go doStuff("foobar") // using an anonymous inner function in a goroutine go func (x int) { // function body goes here }(42) }
ch := make(chan int) // create a channel of type int ch <- 42 // Send a value to the channel ch. v := <-ch // Receive a value from ch // Non-buffered channels block. Read blocks when no value is available, write blocks until there is a read. // Create a buffered channel. Writing to a buffered channels does not block if less than <buffer size> unread values have been written. ch := make(chan int, 100) close(ch) // closes the channel (only sender should close) // read from channel and test if it has been closed v, ok := <-ch // if ok is false, channel has been closed // Read from channel until it is closed for i := range ch { fmt.Println(i) } // select blocks on multiple channel operations, if one unblocks, the corresponding case is executed func doStuff(channelOut, channelIn chan int) { select { case channelOut <- 42: fmt.Println("We could write to channelOut!") case x := <- channelIn: fmt.Println("We could read from channelIn") case <-time.After(time.Second * 1): fmt.Println("timeout") } }
-
A send to a nil channel blocks forever
var c chan string c <- "Hello, World!" // fatal error: all goroutines are asleep - deadlock!
-
A receive from a nil channel blocks forever
var c chan string fmt.Println(<-c) // fatal error: all goroutines are asleep - deadlock!
-
A send to a closed channel panics
var c = make(chan string, 1) c <- "Hello, World!" close(c) c <- "Hello, Panic!" // panic: send on closed channel
-
A receive from a closed channel returns the zero value immediately
var c = make(chan int, 2) c <- 1 c <- 2 close(c) for i := 0; i < 3; i++ { fmt.Printf("%d ", <-c) } // 1 2 0
fmt.Println("Hello, 你好, नमस्ते, Привет, ᎣᏏᏲ") // basic print, plus newline p := struct { X, Y int }{ 17, 2 } fmt.Println( "My point:", p, "x coord=", p.X ) // print structs, ints, etc s := fmt.Sprintln( "My point:", p, "x coord=", p.X ) // print to string variable fmt.Printf("%d hex:%x bin:%b fp:%f sci:%e",17,17,17,17.0,17.0) // c-ish format s2 := fmt.Sprintf( "%d %f", 17, 17.0 ) // formatted print to string variable hellomsg := ` "Hello" in Chinese is 你好 ('Ni Hao') "Hello" in Hindi is नमस्ते ('Namaste') ` // multi-line string literal, using back-tick at beginning and end
A type switch is like a regular switch statement, but the cases in a type switch specify types (not values) which are compared against the type of the value held by the given interface value.
func do(i interface{}) { switch v := i.(type) { case int: fmt.Printf("Twice %v is %v\n", v, v*2) case string: fmt.Printf("%q is %v bytes long\n", v, len(v)) default: fmt.Printf("I don't know about type %T!\n", v) } } func main() { do(21) do("hello") do(true) }
Go programs can embed static files using the "embed"
package as follows:
package main import ( "embed" "log" "net/http" ) // content holds the static content (2 files) for the web server. //go:embed a.txt b.txt var content embed.FS func main() { http.Handle("/", http.FileServer(http.FS(content))) log.Fatal(http.ListenAndServe(":8080", nil)) }
package main import ( "fmt" "net/http" ) // define a type for the response type Hello struct{} // let that type implement the ServeHTTP method (defined in interface http.Handler) func (h Hello) ServeHTTP(w http.ResponseWriter, r *http.Request) { fmt.Fprint(w, "Hello!") } func main() { var h Hello http.ListenAndServe("localhost:4000", h) } // Here's the method signature of http.ServeHTTP: // type Handler interface { // ServeHTTP(w http.ResponseWriter, r *http.Request) // }