Skip to content
Prev Previous commit
Next Next commit
chore: update markdown
--- type: pre_commit_static_analysis_report description: Results of running static analysis checks when committing changes. report: - task: lint_filenames status: passed - task: lint_editorconfig status: passed - task: lint_markdown status: passed - task: lint_package_json status: na - task: lint_repl_help status: na - task: lint_javascript_src status: na - task: lint_javascript_cli status: na - task: lint_javascript_examples status: na - task: lint_javascript_tests status: na - task: lint_javascript_benchmarks status: na - task: lint_python status: na - task: lint_r status: na - task: lint_c_src status: na - task: lint_c_examples status: na - task: lint_c_benchmarks status: na - task: lint_c_tests_fixtures status: na - task: lint_shell status: na - task: lint_typescript_declarations status: na - task: lint_typescript_tests status: na - task: lint_license_headers status: passed ---
  • Loading branch information
Shabareesh Shetty authored and Shabareesh Shetty committed Aug 4, 2025
commit a0d7b5f0023600f63fa36a0bc3c49c3432e90c51
4 changes: 2 additions & 2 deletions lib/node_modules/@stdlib/blas/base/dsymm/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ limitations under the License.

# dsymm

> Perform the matrix-matrix operation `C = α*A*B + β*C` or `C = α*B*A + β*C` where `α` and `β` are scalars, `A` is a symmetric matrix and `B` and `C` are `M` by `N` matrices.
> Perform the matrix-matrix operation `C = α*A*B + β*C` or `C = α*B*A + β*C`.

<section class="usage">

Expand Down Expand Up @@ -49,7 +49,7 @@ The function has the following parameters:

- **ord**: storage layout.
- **side**: specifies whether `A` appears on the left or right of `B`.
- **uplo**: specifies whether the upper or lower triangular part of the symmetric matrix `A` is supplied.
- **uplo**: specifies whether the upper or lower triangular part of the symmetric matrix `A` to be referenced.
- **M**: number of rows in the matrix `op(A)` and in the matrix `C`.
- **N**: number of columns in the matrix `op(B)` and in the matrix `C`.
- **α**: scalar constant.
Expand Down