Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Do not collect tokenizer metrics during inference
  • Loading branch information
AnMakc committed Oct 29, 2025
commit 21eb36afc75bd5bbc82eddc4998e02c2f907094d
2 changes: 1 addition & 1 deletion model/kronos.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,7 +155,7 @@ def encode(self, x, half=False):
z = layer(z)
z = self.quant_embed(z)

bsq_loss, quantized, z_indices = self.tokenizer(z, half)
bsq_loss, quantized, z_indices = self.tokenizer(z, half=half, collect_metrics=False)
return z_indices

def decode(self, x, half=False):
Expand Down
17 changes: 10 additions & 7 deletions model/module.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,20 +87,25 @@ def quantize(self, z):
torch.tensor(-1, dtype=z.dtype, device=z.device))
return z + (zhat - z).detach()

def forward(self, z):
def forward(self, z, collect_metrics=True):
# if self.input_format == 'bchw':
# z = rearrange(z, 'b c h w -> b h w c')
zq = self.quantize(z)

q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1.

zq = zq * q_scale

if not collect_metrics:
return zq, zq.new_zeros(()), {}

indices = self.codes_to_indexes(zq.detach())
group_indices = self.codes_to_group_indexes(zq.detach())
if not self.training:
used_codes = torch.unique(indices, return_counts=False)
else:
used_codes = None

q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1.

if self.soft_entropy:
persample_entropy, cb_entropy, avg_prob = self.soft_entropy_loss(z)
entropy_penalty = self.gamma0 * persample_entropy - self.gamma * cb_entropy
Expand All @@ -110,8 +115,6 @@ def forward(self, z):
cb_entropy = codebook_entropy(zq, self.basis, self.embed_dim)
entropy_penalty = self.gamma0 * persample_entropy - self.gamma * cb_entropy

zq = zq * q_scale

# commit loss
commit_loss = self.beta * torch.mean(((zq.detach() - z) ** 2).sum(dim=-1))

Expand Down Expand Up @@ -239,9 +242,9 @@ def bits_to_indices(self, bits):
)
return (bits * indices).sum(-1)

def forward(self, z, half=False):
def forward(self, z, half=False, collect_metrics=True):
z = F.normalize(z, dim=-1)
quantized, bsq_loss, metrics = self.bsq(z)
quantized, bsq_loss, metrics = self.bsq(z, collect_metrics=collect_metrics)
if half:
q_pre = quantized[:, :, :self.s1_bits]
q_post = quantized[:, :, self.s1_bits:]
Expand Down