Skip to content

rsquaredacademy/olsrr

Repository files navigation

olsrr

CRAN_Status_Badge R build status Coverage status

Overview

The olsrr package provides following tools for building OLS regression models using R:

  • Comprehensive Regression Output
  • Variable Selection Procedures
  • Heteroskedasticity Tests
  • Collinearity Diagnostics
  • Model Fit Assessment
  • Measures of Influence
  • Residual Diagnostics
  • Variable Contribution Assessment

Installation

# Install release version from CRAN install.packages("olsrr") # Install development version from GitHub # install.packages("pak") pak::pak("rsquaredacademy/olsrr")

Articles

Usage

olsrr uses consistent prefix ols_ for easy tab completion. If you know how to write a formula or build models using lm, you will find olsrr very useful. Most of the functions use an object of class lm as input. So you just need to build a model using lm and then pass it onto the functions in olsrr. Below is a quick demo:

Regression

model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars) ols_regress(model) #> Model Summary  #> --------------------------------------------------------------- #> R 0.914 RMSE 2.409  #> R-Squared 0.835 MSE 5.801  #> Adj. R-Squared 0.811 Coef. Var 13.051  #> Pred R-Squared 0.771 AIC 159.070  #> MAE 1.858 SBC 167.864  #> --------------------------------------------------------------- #> RMSE: Root Mean Square Error  #> MSE: Mean Square Error  #> MAE: Mean Absolute Error  #> AIC: Akaike Information Criteria  #> SBC: Schwarz Bayesian Criteria  #>  #> ANOVA  #> -------------------------------------------------------------------- #> Sum of  #> Squares DF Mean Square F Sig.  #> -------------------------------------------------------------------- #> Regression 940.412 4 235.103 34.195 0.0000  #> Residual 185.635 27 6.875  #> Total 1126.047 31  #> -------------------------------------------------------------------- #>  #> Parameter Estimates  #> ---------------------------------------------------------------------------------------- #> model Beta Std. Error Std. Beta t Sig lower upper  #> ---------------------------------------------------------------------------------------- #> (Intercept) 27.330 8.639 3.164 0.004 9.604 45.055  #> disp 0.003 0.011 0.055 0.248 0.806 -0.019 0.025  #> hp -0.019 0.016 -0.212 -1.196 0.242 -0.051 0.013  #> wt -4.609 1.266 -0.748 -3.641 0.001 -7.206 -2.012  #> qsec 0.544 0.466 0.161 1.166 0.254 -0.413 1.501  #> ----------------------------------------------------------------------------------------

Getting Help

If you encounter a bug, please file a minimal reproducible example using reprex on github. For questions and clarifications, use StackOverflow.

Code of Conduct

Please note that the olsrr project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.