- Notifications
You must be signed in to change notification settings - Fork 9.8k
FSDP2 example code for tutorial #1343
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from 2 commits
Commits
Show all changes
4 commits Select commit Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,26 @@ | ||
| ## FSDP2 | ||
| To run FSDP2 on transformer model: | ||
| ``` | ||
| cd distributed/FSDP2 | ||
| torchrun --nproc_per_node 2 train.py | ||
| ``` | ||
| * For 1st time, it creates a "checkpoints" folder and save state dicts there | ||
| * For 2nd time, it loads from previous checkpoints | ||
| | ||
| To enable explicit prefetching | ||
| ``` | ||
| torchrun --nproc_per_node 2 train.py --explicit-prefetch | ||
| ``` | ||
| | ||
| To enable mixed precision | ||
| ``` | ||
| torchrun --nproc_per_node 2 train.py --mixed-precision | ||
| ``` | ||
| | ||
| To showcse DCP API | ||
| ||
| ``` | ||
| torchrun --nproc_per_node 2 train.py --dcp-api | ||
| ``` | ||
| | ||
| ## Ensure you are running a recent version of PyTorch: | ||
| see https://pytorch.org/get-started/locally/ to install at least 2.5 and ideally a current nightly build. | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,209 @@ | ||
| import os | ||
| import time | ||
| | ||
| import torch | ||
| import torch.nn as nn | ||
| from torch.distributed.checkpoint.state_dict import ( | ||
| _init_optim_state, | ||
| get_model_state_dict, | ||
| get_optimizer_state_dict, | ||
| set_model_state_dict, | ||
| set_optimizer_state_dict, | ||
| StateDictOptions, | ||
| ) | ||
| from torch.distributed.fsdp import FSDPModule | ||
| from torch.distributed.tensor import distribute_tensor, DTensor | ||
| | ||
| | ||
| MODEL_CHECKPOINT = "model_state_dict.pt" | ||
| OPTIM_CHECKPOINT = "optim_state_dict.pt" | ||
| PARAMS = "params" | ||
| | ||
| | ||
| def get_latest_checkpoint_folder(path): | ||
| max_num = None | ||
| if not os.path.exists(path): | ||
| return max_num | ||
| for name in os.listdir(path): | ||
| folder_path = os.path.join(path, name) | ||
| if os.path.isdir(folder_path): | ||
| try: | ||
| num = int(name) | ||
| if max_num is None or num > max_num: | ||
| max_num = num | ||
| except ValueError: | ||
| pass # Skip non-numeric folder names | ||
| return max_num | ||
| | ||
| | ||
| class Checkpointer: | ||
| def __init__(self, folder: str, dcp_api: bool): | ||
| self.folder = folder | ||
| self.dcp_api = dcp_api | ||
| self.last_training_time = get_latest_checkpoint_folder( | ||
| f"{folder}/{'dcp_api' if dcp_api else 'dtensor_api'}" | ||
| ) | ||
| | ||
| def is_empty(self): | ||
| return self.last_training_time is None | ||
| | ||
| def load_model(self, model: FSDPModule): | ||
| last_model_checkpoint = ( | ||
| f"{self.folder}/{'dcp_api' if self.dcp_api else 'dtensor_api'}" | ||
| f"/{self.last_training_time}/{MODEL_CHECKPOINT}" | ||
| ) | ||
| full_sd = torch.load( | ||
| last_model_checkpoint, mmap=True, weights_only=True, map_location="cpu" | ||
| ) | ||
| if self.dcp_api: | ||
| set_model_state_dict( | ||
| model=model, | ||
| model_state_dict=full_sd, | ||
| options=StateDictOptions( | ||
| full_state_dict=True, | ||
| broadcast_from_rank0=True, | ||
| ), | ||
| ) | ||
| return | ||
| meta_sharded_sd = model.state_dict() | ||
| sharded_sd = {} | ||
| for param_name, full_tensor in full_sd.items(): | ||
| sharded_meta_param = meta_sharded_sd.get(param_name) | ||
| sharded_tensor = distribute_tensor( | ||
| full_tensor, | ||
| sharded_meta_param.device_mesh, | ||
| sharded_meta_param.placements, | ||
| ) | ||
| sharded_sd[param_name] = nn.Parameter(sharded_tensor) | ||
| # choose `assign=True` since we cannot call `copy_` on meta tensor | ||
| model.load_state_dict(sharded_sd, strict=False, assign=True) | ||
| | ||
| def load_optim(self, model: FSDPModule, opt: torch.optim.Optimizer): | ||
| last_optim_checkpoint = ( | ||
| f"{self.folder}/{'dcp_api' if self.dcp_api else 'dtensor_api'}" | ||
| f"/{self.last_training_time}/{OPTIM_CHECKPOINT}" | ||
| ) | ||
| full_sd = torch.load( | ||
| last_optim_checkpoint, mmap=True, weights_only=True, map_location="cpu" | ||
| ) | ||
| if self.dcp_api: | ||
| set_optimizer_state_dict( | ||
| model=model, | ||
| optimizers=opt, | ||
| optim_state_dict=full_sd, | ||
| options=StateDictOptions( | ||
| full_state_dict=True, | ||
| broadcast_from_rank0=True, | ||
| ), | ||
| ) | ||
| return | ||
| _init_optim_state(opt) | ||
| param_groups = opt.state_dict()["param_groups"] | ||
| state = opt.state_dict()["state"] | ||
| | ||
| full_param_groups = full_sd["param_groups"] | ||
| full_state = full_sd["state"] | ||
| | ||
| for param_group, full_param_group in zip(param_groups, full_param_groups): | ||
| for key, value in full_param_group.items(): | ||
| if key == PARAMS: | ||
| continue | ||
| param_group[key] = value | ||
| for pid, full_pid in zip(param_group[PARAMS], full_param_group[PARAMS]): | ||
| if pid not in state: | ||
| continue | ||
| param_state = state[pid] | ||
| full_param_state = full_state[full_pid] | ||
| for attr, full_tensor in full_param_state.items(): | ||
| sharded_tensor = param_state[attr] | ||
| if isinstance(sharded_tensor, DTensor): | ||
| # exp_avg is DTensor | ||
| param_state[attr] = distribute_tensor( | ||
| full_tensor, | ||
| sharded_tensor.device_mesh, | ||
| sharded_tensor.placements, | ||
| ) | ||
| else: | ||
| # step is plain tensor | ||
| param_state[attr] = full_tensor | ||
| opt.load_state_dict( | ||
| { | ||
| "param_groups": param_groups, | ||
| "state": state, | ||
| } | ||
| ) | ||
| | ||
| def _get_full_model_state_dict(self, model: FSDPModule): | ||
| if self.dcp_api: | ||
| return get_model_state_dict( | ||
| model=model, | ||
| options=StateDictOptions( | ||
| full_state_dict=True, | ||
| cpu_offload=True, | ||
| ), | ||
| ) | ||
| | ||
| sharded_sd = model.state_dict() | ||
| cpu_state_dict = {} | ||
| for param_name, sharded_param in sharded_sd.items(): | ||
| full_param = sharded_param.full_tensor() | ||
| if torch.distributed.get_rank() == 0: | ||
| cpu_state_dict[param_name] = full_param.cpu() | ||
| else: | ||
| del full_param | ||
| return cpu_state_dict | ||
| | ||
| def _get_full_optimizer_state_dict( | ||
| self, | ||
| model: FSDPModule, | ||
| opt: torch.optim.Optimizer, | ||
| ): | ||
| if self.dcp_api: | ||
| return get_optimizer_state_dict( | ||
| model=model, | ||
| optimizers=opt, | ||
| options=StateDictOptions( | ||
| full_state_dict=True, | ||
| cpu_offload=True, | ||
| ), | ||
| ) | ||
| is_rank_zero = torch.distributed.get_rank() == 0 | ||
| sharded_sd = opt.state_dict() | ||
| sharded_state = sharded_sd["state"] | ||
| full_state = {} | ||
| for group_id, sharded_group in sharded_state.items(): | ||
| group_state = {} | ||
| for attr, sharded_tensor in sharded_group.items(): | ||
| if isinstance(sharded_tensor, DTensor): | ||
| # "exp_avg" in AdamW is `DTensor` | ||
| full_tensor = sharded_tensor.full_tensor() | ||
| else: | ||
| # "step" in AdamW is plain tensor | ||
| full_tensor = sharded_tensor | ||
| if is_rank_zero: | ||
| group_state[attr] = full_tensor.cpu() | ||
| else: | ||
| del full_tensor | ||
| if is_rank_zero: | ||
| full_state[group_id] = group_state | ||
| else: | ||
| del group_state | ||
| if is_rank_zero: | ||
| return { | ||
| "param_groups": sharded_sd["param_groups"], | ||
| "state": full_state, | ||
| } | ||
| else: | ||
| return {} | ||
| | ||
| def save(self, model: FSDPModule, optim: torch.optim.Optimizer): | ||
| model_state_dict = self._get_full_model_state_dict(model) | ||
| optim_state_dict = self._get_full_optimizer_state_dict(model, optim) | ||
| if torch.distributed.get_rank() == 0: | ||
| new_training_time = int(time.time() * 1000) | ||
| new_checkpoint_folder = f"{self.folder}/{'dcp_api' if self.dcp_api else 'dtensor_api'}/{new_training_time}" | ||
| new_model_checkpoint = f"{new_checkpoint_folder}/{MODEL_CHECKPOINT}" | ||
| new_optim_checkpoint = f"{new_checkpoint_folder}/{OPTIM_CHECKPOINT}" | ||
| os.makedirs(new_checkpoint_folder, exist_ok=True) | ||
| torch.save(model_state_dict, new_model_checkpoint) | ||
| torch.save(optim_state_dict, new_optim_checkpoint) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,134 @@ | ||
| from dataclasses import dataclass | ||
| | ||
| import torch | ||
| import torch.nn as nn | ||
| import torch.nn.functional as F | ||
| | ||
| | ||
| @dataclass | ||
| class ModelArgs: | ||
| n_layers: int = 2 | ||
| vocab_size: int = 8 | ||
| max_seq_len: int = 16 | ||
| dim: int = 16 | ||
| n_heads: int = 4 | ||
| dropout_p: float = 0.1 | ||
| | ||
| | ||
| class Attention(nn.Module): | ||
| def __init__(self, args: ModelArgs): | ||
| super().__init__() | ||
| assert args.dim % args.n_heads == 0 | ||
| self.head_dim = args.dim // args.n_heads | ||
| self.n_heads = args.n_heads | ||
| self.dropout_p = args.dropout_p | ||
| self.resid_dropout = nn.Dropout(args.dropout_p) | ||
| | ||
| self.wq = nn.Linear(args.dim, args.dim, bias=False) | ||
| self.wk = nn.Linear(args.dim, args.dim, bias=False) | ||
| self.wv = nn.Linear(args.dim, args.dim, bias=False) | ||
| self.wo = nn.Linear(args.dim, args.dim, bias=False) | ||
| | ||
| def forward(self, x): | ||
| bsz, seq_len, _ = x.size() | ||
| queries, keys, values = self.wq(x), self.wk(x), self.wv(x) | ||
| queries = queries.view(bsz, seq_len, self.n_heads, self.head_dim) | ||
| keys = keys.view(bsz, seq_len, self.n_heads, self.head_dim) | ||
| values = values.view(bsz, seq_len, self.n_heads, self.head_dim) | ||
| | ||
| queries = queries.transpose(1, 2) # (bsz, n_heads, seq_len, head_dim) | ||
| keys = keys.transpose(1, 2) # (bsz, n_heads, seq_len, head_dim) | ||
| values = values.transpose(1, 2) # (bsz, n_heads, seq_len, head_dim) | ||
| | ||
| output = F.scaled_dot_product_attention( | ||
| queries, | ||
| keys, | ||
| values, | ||
| None, | ||
| self.dropout_p if self.training else 0, | ||
| ) | ||
| output = output.transpose(1, 2).contiguous().view(bsz, seq_len, -1) | ||
| return self.resid_dropout(self.wo(output)) | ||
| | ||
| def reset_parameters(self): | ||
| self.wq.reset_parameters() | ||
| self.wk.reset_parameters() | ||
| self.wv.reset_parameters() | ||
| self.wo.reset_parameters() | ||
| | ||
| | ||
| class FeedForward(nn.Module): | ||
| def __init__(self, dim, hidden_dim, dropout_p): | ||
| super().__init__() | ||
| self.w1 = nn.Linear(dim, hidden_dim) | ||
| self.gelu = nn.GELU() | ||
| self.w2 = nn.Linear(hidden_dim, dim) | ||
| self.resid_dropout = nn.Dropout(dropout_p) | ||
| | ||
| def forward(self, x): | ||
| return self.resid_dropout(self.w2(self.gelu(self.w1(x)))) | ||
| | ||
| def reset_parameters(self): | ||
| self.w1.reset_parameters() | ||
| self.w2.reset_parameters() | ||
| | ||
| | ||
| class TransformerBlock(nn.Module): | ||
| def __init__(self, args: ModelArgs): | ||
| super().__init__() | ||
| self.attention_norm = nn.LayerNorm(args.dim) | ||
| self.attention = Attention(args) | ||
| self.ffn_norm = nn.LayerNorm(args.dim) | ||
| self.feed_forward = FeedForward( | ||
| args.dim, hidden_dim=4 * args.dim, dropout_p=args.dropout_p | ||
| ) | ||
| | ||
| def forward(self, x): | ||
| h = x + self.attention(self.attention_norm(x)) | ||
| out = h + self.feed_forward(self.ffn_norm(h)) | ||
| return out | ||
| | ||
| def reset_parameters(self): | ||
| self.attention_norm.reset_parameters() | ||
| self.attention.reset_parameters() | ||
| self.ffn_norm.reset_parameters() | ||
| self.feed_forward.reset_parameters() | ||
| | ||
| | ||
| # A toy transformer model, partly inspired by the nanoGPT model: | ||
| # https://github.com/karpathy/nanoGPT. | ||
| class Transformer(nn.Module): | ||
| def __init__(self, args: ModelArgs): | ||
| super().__init__() | ||
| assert args.vocab_size is not None | ||
| assert args.max_seq_len is not None | ||
| self.model_args = args | ||
| self.max_seq_len = args.max_seq_len | ||
| self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim) | ||
| self.pos_embeddings = nn.Embedding(args.max_seq_len, args.dim) | ||
| self.dropout = nn.Dropout(args.dropout_p) | ||
| self.layers = nn.ModuleList() | ||
| for _ in range(args.n_layers): | ||
| self.layers.append(TransformerBlock(args)) | ||
| self.norm = nn.LayerNorm(args.dim) | ||
| self.output = nn.Linear(args.dim, args.vocab_size, bias=False) | ||
| | ||
| def forward(self, tokens): | ||
| _bsz, seq_len = tokens.size() | ||
| assert seq_len <= self.max_seq_len | ||
| h = self.tok_embeddings(tokens) | ||
| pos = torch.arange(0, seq_len, device=tokens.device) | ||
| p = self.pos_embeddings(pos) # positional embeddings of shape (seq_len, dim) | ||
| h = h + p | ||
| h = self.dropout(h) | ||
| for layer in self.layers: | ||
| h = layer(h) | ||
| h = self.norm(h) | ||
| output = self.output(h).float() | ||
| return output | ||
| | ||
| def reset_parameters(self): | ||
| self.tok_embeddings.reset_parameters() | ||
| self.pos_embeddings.reset_parameters() | ||
| self.norm.reset_parameters() | ||
| self.output.reset_parameters() |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit. This suggestion is invalid because no changes were made to the code. Suggestions cannot be applied while the pull request is closed. Suggestions cannot be applied while viewing a subset of changes. Only one suggestion per line can be applied in a batch. Add this suggestion to a batch that can be applied as a single commit. Applying suggestions on deleted lines is not supported. You must change the existing code in this line in order to create a valid suggestion. Outdated suggestions cannot be applied. This suggestion has been applied or marked resolved. Suggestions cannot be applied from pending reviews. Suggestions cannot be applied on multi-line comments. Suggestions cannot be applied while the pull request is queued to merge. Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
save -> saves