Skip to content

A Pytorch implementation of: "Deep Functional Maps: Structured Prediction for Dense Shape Correspondence"

License

Notifications You must be signed in to change notification settings

pvnieo/FMNet-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FMNet-pytorch

A pytorch implementation of: "Deep Functional Maps: Structured Prediction for Dense Shape Correspondence" [link]

Installation

This implementation runs on python >= 3.7, use pip to install dependencies:

pip3 install -r requirements.txt

Download data & preprocessing

Download the desired dataset and put it in the data folder. Multiple datasets are available here.

An example with the faust-remeshed dataset is provided.

Build shot calculator:

cd fmnet/utils/shot cmake . make

If you got any errors in compiling shot, please see here.

Use fmnet/preprocess.py to calculate the Laplace decomposition, geodesic distance using the Dijkstra algorithm and the shot descriptors of input shapes, data are saved in .mat format:

usage: preprocess.py [-h] [-d DATAROOT] [-sd SAVE_DIR] [-ne NUM_EIGEN] [-nj NJOBS] [--nn NN] Preprocess data for FMNet training. Compute Laplacian eigen decomposition, shot features, and geodesic distance for each shape. optional arguments: -h, --help show this help message and exit -d DATAROOT, --dataroot DATAROOT root directory of the dataset -sd SAVE_DIR, --save-dir SAVE_DIR root directory to save the processed dataset -ne NUM_EIGEN, --num-eigen NUM_EIGEN number of eigenvectors kept. -nj NJOBS, --njobs NJOBS Number of parallel processes to use. --nn NN Number of Neighbor to consider when computing geodesic matrix.

NB: if the shapes have many vertices, the computation of geodesic distance will consume a lot of memory and take a lot of time.

Usage

Use the train.py script to train the FMNet network.

usage: train.py [-h] [--lr LR] [--b1 B1] [--b2 B2] [-bs BATCH_SIZE] [--n-epochs N_EPOCHS] [--dim-basis DIM_BASIS] [-nv N_VERTICES] [-nb NUM_BLOCKS] [-d DATAROOT] [--save-dir SAVE_DIR] [--n-cpu N_CPU] [--no-cuda] [--checkpoint-interval CHECKPOINT_INTERVAL] [--log-interval LOG_INTERVAL] Launch the training of FMNet model. optional arguments: -h, --help show this help message and exit --lr LR adam: learning rate --b1 B1 adam: decay of first order momentum of gradient --b2 B2 adam: decay of first order momentum of gradient -bs BATCH_SIZE, --batch-size BATCH_SIZE size of the batches --n-epochs N_EPOCHS number of epochs of training --dim-basis DIM_BASIS number of eigenvectors used for representation. -nv N_VERTICES, --n-vertices N_VERTICES Number of vertices used per shape -nb NUM_BLOCKS, --num-blocks NUM_BLOCKS number of resnet blocks -d DATAROOT, --dataroot DATAROOT root directory of the dataset --save-dir SAVE_DIR root directory of the dataset --n-cpu N_CPU number of cpu threads to use during batch generation --no-cuda Disable GPU computation --checkpoint-interval CHECKPOINT_INTERVAL interval between model checkpoints --log-interval LOG_INTERVAL interval between logging train information

Example

python3 train.py -bs 4 --n-epochs 10

About

A Pytorch implementation of: "Deep Functional Maps: Structured Prediction for Dense Shape Correspondence"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published