Implementation of Samba by Microsoft in PyTorch.
This aims to be a simpler implementation of the original repo.
Tip
The pip install command should install all dependencies and the package, but some CUDA-heavy dependencies are better installed separately. See below for more details.
git clone https://github.com/pszemraj/samba-pytorch.git cd samba-pytorch pip install -e .
After installing torch
, xformers
, and flash-attn
, you may want to install mamba-ssm
, causal-conv1d
, and fla
from source:
pip install --upgrade pip ninja pip install git+https://github.com/state-spaces/mamba.git --no-build-isolation pip install git+https://github.com/Dao-AILab/causal-conv1d.git --no-build-isolation pip install git+https://github.com/sustcsonglin/flash-linear-attention@98c176e --no-build-isolation
Then, clone this repo and run commands as above.
A basic example of creating a random model from a named config:
from samba_pytorch import Config, GPT cfg = Config.from_name('Samba_421M_1k_window') print*(cfg) model = GPT(cfg) model
A minimalist training script for a character-level language model on enwiki8:
python train.py
Credit to nGPT-pytorch for the enwik8 data set and the training script, which has been adapted for this repo.
samba-pytorch/ ├── pyproject.toml ├── README.md ├── samba_pytorch/ │ ├── __init__.py │ ├── config.py │ ├── modules/ │ │ ├── __init__.py │ │ ├── fused_rotary_embedding.py │ │ ├── gla.py │ │ ├── mamba_simple.py │ │ ├── multiscale_retention.py │ │ ├── rmsnorm.py │ │ └── rotary.py │ ├── samba.py │ ├── tokenizer.py │ └── utils.py
@article{ren2024samba, title={Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling}, author={Liliang Ren and Yang Liu and Yadong Lu and Yelong Shen and Chen Liang and Weizhu Chen}, journal = {arXiv preprint}, year={2024}, url={https://arxiv.org/abs/2406.07522} }