Skip to content

platformatic/react-pprof

Repository files navigation

react-pprof

A React component for visualizing pprof profiles using WebGL.

CI Lint

Features

  • 🚀 WebGL-accelerated rendering for smooth performance with large datasets
  • 🎨 Customizable theming with multiple color schemes
  • 🔍 Interactive zoom and pan with smooth animations
  • 📊 Stack trace visualization with complete call hierarchy
  • 🎯 Frame details panel showing children and parent relationships
  • 📱 Responsive design that works on all screen sizes
  • 🔧 TypeScript support with full type definitions
  • 🧪 Comprehensive testing with visual regression tests
  • High performance optimized for large profile datasets
  • 💻 Command Line Interface for generating static HTML flamegraphs

Installation

npm install react-pprof

Quick Start

import React, { useState, useEffect } from 'react' import { FullFlameGraph, fetchProfile } from 'react-pprof' function App() { const [profile, setProfile] = useState(null) const [loading, setLoading] = useState(true) const [error, setError] = useState(null) useEffect(() => { fetchProfile('/path/to/profile.pprof') .then(setProfile) .catch(setError) .finally(() => setLoading(false)) }, []) if (loading) return <div>Loading profile...</div> if (error) return <div>Error: {error.message}</div> if (!profile) return <div>No profile data</div> return ( <FullFlameGraph profile={profile} height={600} showHottestFrames={true} showControls={true} showStackDetails={true} /> ) }

Server-Side Embedding API

For programmatic generation of embeddable flamegraphs (e.g., for middleware or dynamic HTML generation), use the embedding API that supports rendering multiple graphs efficiently:

import { generateEmbeddableFlameGraph, getFlamegraphBundle } from 'react-pprof' import fs from 'fs' // Get the bundle once (it's cached internally) const { bundle } = await getFlamegraphBundle() // Generate embeddable flamegraphs for multiple profiles const cpuProfile = fs.readFileSync('cpu-profile.pb') const heapProfile = fs.readFileSync('heap-profile.pb') const cpuGraph = await generateEmbeddableFlameGraph(cpuProfile, { title: 'CPU Profile', filename: 'cpu-profile.pb', primaryColor: '#ff4444', secondaryColor: '#ffcc66', height: 500 }) const heapGraph = await generateEmbeddableFlameGraph(heapProfile, { title: 'Heap Profile', filename: 'heap-profile.pb', primaryColor: '#ff4444', secondaryColor: '#ffcc66', height: 500 }) // Use in your HTML response const fullPage = ` <!DOCTYPE html> <html> <head><title>Profiles</title></head> <body>  <h2>CPU Profile</h2>  ${cpuGraph.html}   <h2>Heap Profile</h2>  ${heapGraph.html}   <!-- Include bundle once -->  <script>${bundle}</script>   <!-- Render each graph -->  <script>${cpuGraph.script}</script>  <script>${heapGraph.script}</script> </body> </html> `

API

getFlamegraphBundle()

Returns the reusable React-pprof bundle code (cached after first call). Include this once in your page before rendering any graphs.

Promise<{ bundle: string }>

generateEmbeddableFlameGraph(profileBuffer, options)

Generates embeddable HTML and JavaScript for a single flamegraph. Can be called multiple times for different graphs on the same page.

interface EmbeddableFlameGraphOptions { title?: string // Display title (default: 'Profile') filename?: string // Original filename (default: 'profile.pb') primaryColor?: string // Primary color (default: '#ff4444') secondaryColor?: string // Secondary color (default: '#ffcc66') height?: number // Container height in pixels (default: 500) } interface EmbeddableFlameGraphResult { html: string // HTML container div with unique ID script: string // JavaScript code to render into the container }

Key Features

  • Reusable bundle: The React-pprof bundle is loaded once and cached, improving performance when rendering multiple graphs
  • No global conflicts: Each graph uses unique IDs and local variables, so multiple graphs can coexist without conflicts
  • Self-contained: Generated HTML includes all necessary styling and structure
  • Efficient: Profile data is embedded efficiently and decoded on the client side

Command Line Interface (CLI)

This package includes a CLI utility to generate static HTML flamegraphs from pprof files without requiring a running server.

Installation

Install the CLI globally or use via npx:

# Install globally npm install -g react-pprof # Or use with npx (no installation required) npx react-pprof profile.pb

CLI Usage

# Basic usage react-pprof profile.pb # Custom output file react-pprof -o flamegraph.html profile.pb # Help react-pprof --help

Building CLI Templates

Before using the CLI, build the static templates:

npm run build:cli

This generates optimized HTML templates and JavaScript bundles in the cli-build/ directory.

Supported Profile Formats

The CLI automatically handles both:

  • Gzipped profiles: Common with @datadog/pprof output (auto-detected)
  • Uncompressed profiles: Raw pprof binary data

Example Workflow

# 1. Generate a profile (see examples below) curl http://localhost:3000/profile > profile.pb # 2. Build CLI templates (one-time setup) npm run build:cli # 3. Generate static HTML flamegraph react-pprof profile.pb # 4. Open in browser open profile.html

The generated HTML includes:

  • Complete React flamegraph visualization
  • Interactive tooltips and stack details
  • WebGL-optimized rendering
  • All profile data embedded (no server required)

Capturing pprof Profiles

Using @datadog/pprof

To capture CPU profiles in Node.js applications, you can use the @datadog/pprof package:

npm install @datadog/pprof

Requirements: Node.js 18 or greater

Basic CPU Profile Capture

const pprof = require('@datadog/pprof') const fs = require('fs') // Collect a 10-second wall time profile const profile = await pprof.time.profile({ durationMillis: 10000 // Profile for 10 seconds }) // Or... pprof.time.start({ durationMillis: 10000 }) // Do something ... const profile = pprof.time.stop() // Encode profile data to buffer const buf = profile.encode() // Save profile data to disk fs.writeFile('cpu-profile.pprof', buf, (err) => { if (err) throw err; console.log('Profile saved to cpu-profile.pprof') })

Example Servers

This repository includes example servers to demonstrate profile generation:

Real Profiling Server (example-server.js)

# Start the real profiling server node example-server.js # Generate some load to profile curl http://localhost:3002/load curl http://localhost:3002/load curl http://localhost:3002/load # Download gzipped profile (automatically handled by CLI) curl http://localhost:3002/profile > real-profile.pb # Generate flamegraph react-pprof real-profile.pb

Synthetic Profile Server (simple-server.js)

For testing and demonstration, use the synthetic server that generates compatible pprof data:

# Start the synthetic server node simple-server.js # Download synthetic profile curl http://localhost:3001/profile > synthetic-profile.pb # Generate flamegraph react-pprof synthetic-profile.pb

The synthetic server creates realistic function hierarchies and CPU distributions for demonstration purposes.

Components

This package provides several React components for visualizing pprof profiles. Click on each component name for detailed documentation, props, and usage examples:

Core Components

  • FullFlameGraph - Complete flame graph with navigation controls, hottest frames bar, and stack details panel
  • FlameGraph - Core WebGL-powered flame graph visualization component
  • StackDetails - Detailed panel showing stack trace and child frames

Navigation Components

Utility Components

Getting Started

For most use cases, start with FullFlameGraph as it provides a complete profiling interface out of the box. Use the individual components when you need more control over the layout and functionality.

Data Types

FrameData

Represents a single frame in the flame graph.

interface FrameData { id: string; // Unique identifier for the frame name: string; // Function name value: number; // Frame weight/value depth: number; // Stack depth (0 = root) x: number; // Normalized x position (0-1) width: number; // Normalized width (0-1) functionName: string; // Function name (same as name) fileName?: string; // Source file name lineNumber?: number; // Source line number }

FlameNode

Represents a node in the flame graph tree structure.

interface FlameNode { id: string; // Unique identifier name: string; // Function name value: number; // Frame weight/value children: FlameNode[]; // Child frames parent?: FlameNode; // Parent frame x: number; // Normalized x position (0-1) width: number; // Normalized width (0-1) depth: number; // Stack depth (0 = root) fileName?: string; // Source file name lineNumber?: number; // Source line number }

Theming

Both the <FlameGraph /> and <FullFlameGraph /> components accept several color properties to configure their appearance:

  • backgroundColor - Background color of the flame graph
  • textColor - Color of text labels and UI elements
  • primaryColor - Color for root nodes or nodes near 100% of their parent's weight
  • secondaryColor - Color for nodes near 0% of their parent's weight

The flame graph uses a gradient of colors between the primary and secondary colors depending on each frame's weight ratio compared to its parent.

// Traditional Red/Orange theme <FullFlameGraph profile={profile} primaryColor="#ff4444" secondaryColor="#ffcc66" backgroundColor="#1e1e1e" textColor="#ffffff" /> // Green theme <FullFlameGraph profile={profile} primaryColor="#2ecc71" secondaryColor="#27ae60" backgroundColor="#1e1e1e" textColor="#ffffff" /> // Blue theme <FullFlameGraph profile={profile} primaryColor="#2563eb" secondaryColor="#7dd3fc" backgroundColor="#2c3e50" textColor="#ffffff" />

Interactions

Mouse Controls

  • Click Frame: Zoom in to selected frame
  • Click Empty Space: Zoom out to root view
  • Hover Frame: Show tooltip with frame details
  • Mouse Move: Tooltip follows cursor
  • Mouse Leave: Hide tooltip

Keyboard Navigation

The flame graph supports full keyboard navigation for accessibility and power users:

  • Arrow Up (↑): Navigate to the parent frame (zoom out one level in the call stack)
  • Arrow Down (↓): Navigate to the first child frame (zoom into the largest child by value)
  • Arrow Left (←): Navigate to the previous sibling frame (move to the frame before the current one at the same stack level)
  • Arrow Right (→): Navigate to the next sibling frame (move to the frame after the current one at the same stack level)
  • Escape or Home: Reset zoom to show the complete flame graph

The canvas is focusable (tabIndex=0) and includes appropriate ARIA attributes for screen readers. Keyboard navigation automatically zooms to each selected frame and triggers the onFrameClick callback with the appropriate frame data.

Testing

Running Tests

# Run all tests npm test # Run tests with UI npm run test:ui # Run specific test suites npm run test:flamegraph npm run test:stack-details npm run test:integration # Update visual snapshots npm run test:update-snapshots

Test Coverage

  • Unit Tests: Component logic and data processing
  • Integration Tests: Component interaction and communication
  • Visual Regression Tests: Pixel-perfect UI consistency
  • Performance Tests: WebGL performance benchmarks
  • Accessibility Tests: Keyboard navigation and ARIA support

Development

Setup

# Clone repository git clone https://github.com/platformatic/react-pprof.git cd react-pprof # Install dependencies npm install # Start development server npm run storybook

About

React component for visualizing pprof with WebGL

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Contributors 6