Skip to content

pgvector/pgvector-elixir

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pgvector-elixir

pgvector support for Elixir

Supports Ecto and Postgrex

Build Status

Installation

Add this line to your application’s mix.exs under deps:

{:pgvector, "~> 0.3.0"}

And follow the instructions for your database library:

Or check out some examples:

Ecto

Create lib/postgrex_types.ex with:

Postgrex.Types.define(MyApp.PostgrexTypes, Pgvector.extensions() ++ Ecto.Adapters.Postgres.extensions(), [])

And add to config/config.exs:

config :my_app, MyApp.Repo, types: MyApp.PostgrexTypes

Create a migration

mix ecto.gen.migration create_vector_extension

with:

defmodule MyApp.Repo.Migrations.CreateVectorExtension do use Ecto.Migration def up do execute "CREATE EXTENSION IF NOT EXISTS vector" end def down do execute "DROP EXTENSION vector" end end

Run the migration

mix ecto.migrate

You can now use the vector type in future migrations

create table(:items) do add :embedding, :vector, size: 3 end

Also supports :halfvec, :bit, and :sparsevec

Update the model

schema "items" do field :embedding, Pgvector.Ecto.Vector end

Also supports Pgvector.Ecto.HalfVector, Pgvector.Ecto.Bit, and Pgvector.Ecto.SparseVector

Insert a vector

alias MyApp.{Repo, Item} Repo.insert(%Item{embedding: [1, 2, 3]})

Get the nearest neighbors

import Ecto.Query import Pgvector.Ecto.Query Repo.all(from i in Item, order_by: l2_distance(i.embedding, ^Pgvector.new([1, 2, 3])), limit: 5)

Also supports max_inner_product, cosine_distance, l1_distance, hamming_distance, and jaccard_distance

Convert a vector to a list or Nx tensor

item.embedding |> Pgvector.to_list() item.embedding |> Pgvector.to_tensor()

Add an approximate index in a migration

create index("items", ["embedding vector_l2_ops"], using: :hnsw) # or create index("items", ["embedding vector_l2_ops"], using: :ivfflat, options: "lists = 100")

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

Postgrex

Register the extension

Postgrex.Types.define(MyApp.PostgrexTypes, Pgvector.extensions(), [])

And pass it to start_link

{:ok, pid} = Postgrex.start_link(types: MyApp.PostgrexTypes)

Enable the extension

Postgrex.query!(pid, "CREATE EXTENSION IF NOT EXISTS vector", [])

Create a table

Postgrex.query!(pid, "CREATE TABLE items (embedding vector(3))", [])

Insert a vector

Postgrex.query!(pid, "INSERT INTO items (embedding) VALUES ($1)", [[1, 2, 3]])

Get the nearest neighbors

Postgrex.query!(pid, "SELECT * FROM items ORDER BY embedding <-> $1 LIMIT 5", [[1, 2, 3]])

Convert a vector to a list or Nx tensor

vector |> Pgvector.to_list() vector |> Pgvector.to_tensor()

Add an approximate index

Postgrex.query!(pid, "CREATE INDEX ON items USING hnsw (embedding vector_l2_ops)", []) # or Postgrex.query!(pid, "CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100)", [])

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

Reference

Vectors

Create a vector from a list

vec = Pgvector.new([1, 2, 3])

Or an Nx tensor

vec = Nx.tensor([1.0, 2.0, 3.0]) |> Pgvector.new()

Get a list

list = vec |> Pgvector.to_list()

Get an Nx tensor

tensor = vec |> Pgvector.to_tensor()

Half Vectors

Create a half vector from a list

vec = Pgvector.HalfVector.new([1, 2, 3])

Or an Nx tensor

vec = Nx.tensor([1.0, 2.0, 3.0], type: :f16) |> Pgvector.HalfVector.new()

Get a list

list = vec |> Pgvector.to_list()

Get an Nx tensor

tensor = vec |> Pgvector.to_tensor()

Sparse Vectors

Create a sparse vector from a list

vec = Pgvector.SparseVector.new([1, 2, 3])

Or an Nx tensor

vec = Nx.tensor([1.0, 2.0, 3.0]) |> Pgvector.SparseVector.new()

Or a map of non-zero elements

elements = %{0 => 1.0, 2 => 2.0, 4 => 3.0} vec = Pgvector.SparseVector.new(elements, 6)

Note: Indices start at 0

Get the number of dimensions

dim = vec |> Pgvector.SparseVector.dimensions()

Get the indices of non-zero elements

indices = vec |> Pgvector.SparseVector.indices()

Get the values of non-zero elements

values = vec |> Pgvector.SparseVector.values()

Get a list

list = vec |> Pgvector.to_list()

Get an Nx tensor

tensor = vec |> Pgvector.to_tensor()

Upgrading

0.3.0

Lists must be converted to Pgvector structs for Ecto distance functions.

# before l2_distance(i.embedding, [1, 2, 3]) # after l2_distance(i.embedding, ^Pgvector.new([1, 2, 3]))

History

View the changelog

Contributing

Everyone is encouraged to help improve this project. Here are a few ways you can help:

To get started with development:

git clone https://github.com/pgvector/pgvector-elixir.git cd pgvector-elixir mix deps.get createdb pgvector_elixir_test mix test

To run an example:

cd examples/loading mix deps.get createdb pgvector_example mix run example.exs

About

pgvector support for Elixir

Resources

License

Security policy

Stars

Watchers

Forks

Packages

No packages published

Contributors 5

Languages