-  
-   Notifications  You must be signed in to change notification settings 
- Fork 19.2k
Description
Pandas version checks
-  I have checked that this issue has not already been reported. 
-  I have confirmed this bug exists on the latest version of pandas. 
-  I have confirmed this bug exists on the main branch of pandas. 
Reproducible Example
This is for pandas '2.1.1', the latest version raises an error instead.
>>> import pandas as pd >>> import numpy >>> str_arr = pd.array(['a', 'b', 'c', 'foo', 'd', 'bar', None], dtype="string") >>> str_arr <StringArray> ['a', 'b', 'c', 'foo', 'd', 'bar', <NA>] Length: 7, dtype: string >>> b2 = np.asarray(str_arr) >>> b2 array(['a', 'b', 'c', 'foo', 'd', 'bar', <NA>], dtype=object) >>> b2 == a_ext <stdin>:1: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison FalseI'd like an elementwise comparison and not a scalar return value.
Issue Description
When I use a string array with NA values to perform elementwise comparison, the result is a scalar instead of an elementwise matrix.
Here's how this used to work when I used numpy object dtype:
>>> import numpy as np >>> >>> a = np.asarray(['foo', 'bar', 'baz']) >>> b = np.asarray(['a', 'b', 'c', 'foo', 'd', 'bar', None]) >>> b array(['a', 'b', 'c', 'foo', 'd', 'bar', None], dtype=object) >>> >>> # Find matches of `b` in `a` >>> a_ext = a[:, np.newaxis] >>> b == a_ext array([[False, False, False, True, False, False, False], [False, False, False, False, False, True, False], [False, False, False, False, False, False, False]])But when I use a pandas string type as a source for b (rather than object dtype), the result is a scalar boolean (in 2.1.1) or a TypeError (in 2.3.3).
>>> import pandas as pd >>> >>> str_arr = pd.array(['a', 'b', 'c', 'foo', 'd', 'bar', None], dtype="string") >>> str_arr <StringArray> ['a', 'b', 'c', 'foo', 'd', 'bar', <NA>] Length: 7, dtype: string >>> b2 = np.asarray(str_arr) >>> b2 array(['a', 'b', 'c', 'foo', 'd', 'bar', <NA>], dtype=object) >>> pd.__version__ '2.1.1' >>> np.__version__ '1.24.3' >>> b2 == a_ext <stdin>:1: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison False or >>> pd.__version__ '2.3.3' >>> np.__version__ '2.3.4' >>> b2 == a_ext Traceback (most recent call last): File "<python-input-8>", line 8, in <module> b2 == a_ext File "pandas/_libs/missing.pyx", line 392, in pandas._libs.missing.NAType.__bool__ TypeError: boolean value of NA is ambiguousWorkaround: replace NA with None in b2:
>>> b2[pd.isnull(b2)] = None >>> b2 == a_ext array([[False, False, False, True, False, False, False], [False, False, False, False, False, True, False], [False, False, False, False, False, False, False]]) Expected Behavior
An array is returned.
Installed Versions
pd.show_versions()
INSTALLED VERSIONS
commit : e86ed37
 python : 3.11.14.final.0
 python-bits : 64
 OS : Linux
 OS-release : 6.16.12-200.fc42.x86_64
 Version : #1 SMP PREEMPT_DYNAMIC Sun Oct 12 16:31:16 UTC 2025
 machine : x86_64
 processor :
 byteorder : little
 LC_ALL : None
 LANG : en_AU.UTF-8
 LOCALE : en_AU.UTF-8
pandas : 2.1.1
 numpy : 1.24.3
 pytz : 2020.4
 dateutil : 2.8.2
 setuptools : 69.2.0
 pip : 24.2
 Cython : 0.29.34
 pytest : 7.3.1
 hypothesis : None
 sphinx : None
 blosc : None
 feather : None
 xlsxwriter : 0.9.6
 lxml.etree : None
 html5lib : None
 pymysql : None
 psycopg2 : 2.9.6
 jinja2 : 2.11.2
 IPython : None
 pandas_datareader : None
 bs4 : None
 bottleneck : 1.3.5
 dataframe-api-compat: None
 fastparquet : None
 fsspec : None
 gcsfs : None
 matplotlib : None
 numba : None
 numexpr : 2.8.4
 odfpy : None
 openpyxl : 3.1.3
 pandas_gbq : None
 pyarrow : 11.0.0
 pyreadstat : None
 pyxlsb : None
 s3fs : None
 scipy : 1.10.1
 sqlalchemy : 1.3.23
 tables : 3.8.0
 tabulate : None
 xarray : None
 xlrd : 2.0.1
 zstandard : None
 tzdata : 2025.2
 qtpy : None
 pyqt5 : None