-
- Notifications
You must be signed in to change notification settings - Fork 19.4k
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd import numpy as np datetime_column = "datetime" datetime_series = pd.date_range(start="2020-01-01", periods=10, freq="D") datetime_series = datetime_series.append(datetime_series) predictions = pd.DataFrame( { datetime_column: datetime_series, "prediction": np.random.rand(len(datetime_series)), "id": np.repeat(["A", "B"], 10), "area": np.repeat(["fr", "fr", "de", "de", "fr"], 4), } )print(predictions.groupby(["id", "area"]).rolling("7d", on="datetime").max()) datetime prediction id area A de 8 2020-01-09 0.768346 9 2020-01-10 0.768346 fr 0 2020-01-01 0.159567 1 2020-01-02 0.722039 2 2020-01-03 0.722039 3 2020-01-04 0.922641 4 2020-01-05 0.922641 5 2020-01-06 0.922641 6 2020-01-07 0.922641 7 2020-01-08 0.922641 B de 10 2020-01-01 0.158251 11 2020-01-02 0.814331 12 2020-01-03 0.814331 13 2020-01-04 0.814331 14 2020-01-05 0.814331 15 2020-01-06 0.943016 fr 16 2020-01-07 0.975385 17 2020-01-08 0.975385 18 2020-01-09 0.975385 19 2020-01-10 0.975385 print(predictions.groupby(["id", "area"]).rolling("7d", on="datetime")[["prediction"]].max()) prediction id area datetime A de 2020-01-09 0.768346 2020-01-10 0.768346 fr 2020-01-01 0.159567 2020-01-02 0.722039 2020-01-03 0.722039 2020-01-04 0.922641 2020-01-05 0.922641 2020-01-06 0.922641 2020-01-07 0.922641 2020-01-08 0.922641 B de 2020-01-01 0.158251 2020-01-02 0.814331 2020-01-03 0.814331 2020-01-04 0.814331 2020-01-05 0.814331 2020-01-06 0.943016 fr 2020-01-07 0.975385 2020-01-08 0.975385 2020-01-09 0.975385 2020-01-10 0.975385 Issue Description
The only difference is that in the second case I am explicitly selecting a single column [[predictions]] whereas in the first example I am calling it on the full dataframe. This shouldn't make a difference as the dataframe only contains the predictions column outside of the columns used to group and roll on.
This difference causes two issues in the dataframe where I don't select a subset of the columns:
- The old index is appended as an additional unnamed level
- The datetime column is kept as a column instead of as an index level
Expected Behavior
I would expect both cases to behave the way the second example does, with id, area, datetime as the index levels.
Installed Versions
INSTALLED VERSIONS
commit : d9cdd2e
python : 3.10.13.final.0
python-bits : 64
OS : Linux
OS-release : 5.15.0-1066-azure
Version : #75-Ubuntu SMP Thu May 30 14:29:45 UTC 2024
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.2
numpy : 2.1.0
pytz : 2024.1
dateutil : 2.9.0.post0
setuptools : None
pip : None
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 8.26.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2024.1
qtpy : None
pyqt5 : None