-  
-   Notifications  You must be signed in to change notification settings 
- Fork 19.2k
Description
Pandas version checks
-  I have checked that this issue has not already been reported. 
-  I have confirmed this bug exists on the latest version of pandas. 
-  I have confirmed this bug exists on the main branch of pandas. 
Reproducible Example
In [22]: s = pd.Series(pd.date_range('2000', periods=3, freq='15ms')) In [23]: s.dt.microsecond Out[23]: 0 0 1 15000 2 30000 dtype: int32 In [24]: s.convert_dtypes(dtype_backend='pyarrow') Out[24]: 0 2000-01-01 00:00:00 1 2000-01-01 00:00:00.015000 2 2000-01-01 00:00:00.030000 dtype: timestamp[ns][pyarrow] In [25]: s.convert_dtypes(dtype_backend='pyarrow').dt.microsecond Out[25]: 0 0 1 0 2 0 dtype: int64[pyarrow]Issue Description
For non-pyarrow backed dtype, it returns the total number of microseconds since the last second
For pyarrow-backed, it just returns 0
Expected Behavior
In [25]: s.convert_dtypes(dtype_backend='pyarrow').dt.microsecond Out[25]: 0 0 1 15000 2 30000 dtype: int64[pyarrow]Installed Versions
INSTALLED VERSIONS
commit : d9cdd2e
 python : 3.11.9.final.0
 python-bits : 64
 OS : Linux
 OS-release : 5.15.153.1-microsoft-standard-WSL2
 Version : #1 SMP Fri Mar 29 23:14:13 UTC 2024
 machine : x86_64
 processor : x86_64
 byteorder : little
 LC_ALL : None
 LANG : C.UTF-8
 LOCALE : en_US.UTF-8
pandas : 2.2.2
 numpy : 2.0.0
 pytz : 2024.1
 dateutil : 2.9.0.post0
 setuptools : 65.5.0
 pip : 24.0
 Cython : None
 pytest : 8.1.1
 hypothesis : 6.100.1
 sphinx : None
 blosc : None
 feather : None
 xlsxwriter : None
 lxml.etree : None
 html5lib : None
 pymysql : None
 psycopg2 : None
 jinja2 : 3.1.3
 IPython : 8.23.0
 pandas_datareader : None
 adbc-driver-postgresql: None
 adbc-driver-sqlite : None
 bs4 : 4.12.3
 bottleneck : None
 dataframe-api-compat : None
 fastparquet : None
 fsspec : 2024.3.1
 gcsfs : None
 matplotlib : 3.8.4
 numba : None
 numexpr : None
 odfpy : None
 openpyxl : None
 pandas_gbq : None
 pyarrow : 16.1.0
 pyreadstat : None
 python-calamine : None
 pyxlsb : None
 s3fs : None
 scipy : 1.13.0
 sqlalchemy : None
 tables : None
 tabulate : None
 xarray : None
 xlrd : None
 zstandard : None
 tzdata : 2024.1
 qtpy : None
 pyqt5 : None