-  
-  Couldn't load subscription status. 
- Fork 19.2k
Description
Pandas version checks
-  I have checked that this issue has not already been reported. 
-  I have confirmed this bug exists on the latest version of pandas. 
-  I have confirmed this bug exists on the main branch of pandas. 
Reproducible Example
import pandas as pd from io import StringIO x = """  AB|000388907|abc|0150  AB|101044572|abc|0150  AB|000023607|abc|0205  AB|100102040|abc|0205 """ df_arrow = pd.read_csv( StringIO(x), delimiter="|", header=None, dtype=str, engine="pyarrow", keep_default_na=False, ) df_python = pd.read_csv( StringIO(x), delimiter="|", header=None, dtype=str, engine="python", keep_default_na=False, ) df_arrow 0 1 2 3 0 AB 388907 abc 150 1 AB 101044572 abc 150 2 AB 23607 abc 205 3 AB 100102040 abc 205 df_python 0 1 2 3 0 AB 000388907 abc 0150 1 AB 101044572 abc 0150 2 AB 000023607 abc 0205 3 AB 100102040 abc 0205Issue Description
when I use engine=pyarrow and set dtype to str i am seeing the leading zeros in my numeric columns removed even though the resulting column type is 'O'. When I use the python engine I see that the leading zeros are still there as expected.
Expected Behavior
I would expect when treating all columns as strings that the leading zeros are retained and the data is unmodified.
Installed Versions
INSTALLED VERSIONS
commit : bdc79c1
 python : 3.11.8.final.0
 python-bits : 64
 OS : Linux
 OS-release : 6.5.0-17-generic
 Version : #17-Ubuntu SMP PREEMPT_DYNAMIC Thu Jan 11 14:20:13 UTC 2024
 machine : x86_64
 processor : x86_64
 byteorder : little
 LC_ALL : None
 LANG : None
 LOCALE : en_US.UTF-8
pandas : 2.2.1
 numpy : 1.26.4
 pytz : 2024.1
 dateutil : 2.8.2
 setuptools : 69.1.1
 pip : 24.0
 Cython : None
 pytest : None
 hypothesis : None
 sphinx : None
 blosc : None
 feather : None
 xlsxwriter : None
 lxml.etree : None
 html5lib : None
 pymysql : None
 psycopg2 : None
 jinja2 : None
 IPython : None
 pandas_datareader : None
 adbc-driver-postgresql: None
 adbc-driver-sqlite : None
 bs4 : None
 bottleneck : None
 dataframe-api-compat : None
 fastparquet : None
 fsspec : None
 gcsfs : None
 matplotlib : None
 numba : None
 numexpr : None
 odfpy : None
 openpyxl : None
 pandas_gbq : None
 pyarrow : 15.0.0
 pyreadstat : None
 python-calamine : None
 pyxlsb : None
 s3fs : None
 scipy : None
 sqlalchemy : 2.0.27
 tables : None
 tabulate : 0.9.0
 xarray : None
 xlrd : None
 zstandard : None
 tzdata : 2024.1
 qtpy : None
 pyqt5 : None