Skip to content

pamelafox/pgvector-python

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pgvector-python

pgvector support for Python

Supports Django, SQLAlchemy, SQLModel, Psycopg 3, Psycopg 2, asyncpg, and Peewee

Build Status

Installation

Run:

pip install pgvector

And follow the instructions for your database library:

Or check out some examples:

Django

Create a migration to enable the extension

from pgvector.django import VectorExtension class Migration(migrations.Migration): operations = [ VectorExtension() ]

Add a vector field to your model

from pgvector.django import VectorField class Item(models.Model): embedding = VectorField(dimensions=3)

Insert a vector

item = Item(embedding=[1, 2, 3]) item.save()

Get the nearest neighbors to a vector

from pgvector.django import L2Distance Item.objects.order_by(L2Distance('embedding', [3, 1, 2]))[:5]

Also supports MaxInnerProduct and CosineDistance

Get the distance

Item.objects.annotate(distance=L2Distance('embedding', [3, 1, 2]))

Get items within a certain distance

Item.objects.alias(distance=L2Distance('embedding', [3, 1, 2])).filter(distance__lt=5)

Average vectors

from django.db.models import Avg Item.objects.aggregate(Avg('embedding'))

Also supports Sum

Add an approximate index

from pgvector.django import HnswIndex, IvfflatIndex class Item(models.Model): class Meta: indexes = [ HnswIndex( name='my_index', fields=['embedding'], m=16, ef_construction=64, opclasses=['vector_l2_ops'] ), # or IvfflatIndex( name='my_index', fields=['embedding'], lists=100, opclasses=['vector_l2_ops'] ) ]

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

SQLAlchemy

Enable the extension

session.execute(text('CREATE EXTENSION IF NOT EXISTS vector'))

Add a vector column

from pgvector.sqlalchemy import Vector class Item(Base): __tablename__ = "items" id: Mapped[int] = mapped_column(primary_key=True) embedding = mapped_column(Vector(3))

Insert a vector

item = Item(embedding=[1, 2, 3]) session.add(item) session.commit()

Get the nearest neighbors to a vector

session.scalars(select(Item).order_by(Item.embedding.l2_distance([3, 1, 2])).limit(5))

Also supports max_inner_product and cosine_distance

Get the distance

session.scalars(select(Item.embedding.l2_distance([3, 1, 2])))

Get items within a certain distance

session.scalars(select(Item).filter(Item.embedding.l2_distance([3, 1, 2]) < 5))

Average vectors

from sqlalchemy.sql import func session.scalars(select(func.avg(Item.embedding))).first()

Also supports sum

Add an approximate index

index = Index( 'my_index', Item.embedding, postgresql_using='hnsw', postgresql_with={'m': 16, 'ef_construction': 64}, postgresql_ops={'embedding': 'vector_l2_ops'} ) # or index = Index( 'my_index', Item.embedding, postgresql_using='ivfflat', postgresql_with={'lists': 100}, postgresql_ops={'embedding': 'vector_l2_ops'} ) index.create(engine)

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

SQLModel

Enable the extension

session.exec(text('CREATE EXTENSION IF NOT EXISTS vector'))

Add a vector column

from pgvector.sqlalchemy import Vector from sqlalchemy import Column class Item(SQLModel, table=True): embedding: List[float] = Field(sa_column=Column(Vector(3)))

Insert a vector

item = Item(embedding=[1, 2, 3]) session.add(item) session.commit()

Get the nearest neighbors to a vector

session.exec(select(Item).order_by(Item.embedding.l2_distance([3, 1, 2])).limit(5))

Also supports max_inner_product and cosine_distance

Get the distance

session.exec(select(Item.embedding.l2_distance([3, 1, 2])))

Get items within a certain distance

session.exec(select(Item).filter(Item.embedding.l2_distance([3, 1, 2]) < 5))

Average vectors

from sqlalchemy.sql import func session.exec(select(func.avg(Item.embedding))).first()

Also supports sum

Add an approximate index

from sqlalchemy import Index index = Index( 'my_index', Item.embedding, postgresql_using='hnsw', postgresql_with={'m': 16, 'ef_construction': 64}, postgresql_ops={'embedding': 'vector_l2_ops'} ) # or index = Index( 'my_index', Item.embedding, postgresql_using='ivfflat', postgresql_with={'lists': 100}, postgresql_ops={'embedding': 'vector_l2_ops'} ) index.create(engine)

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

Psycopg 3

Enable the extension

conn.execute('CREATE EXTENSION IF NOT EXISTS vector')

Register the vector type with your connection

from pgvector.psycopg import register_vector register_vector(conn)

For async connections, use

from pgvector.psycopg import register_vector_async await register_vector_async(conn)

Create a table

conn.execute('CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3))')

Insert a vector

embedding = np.array([1, 2, 3]) conn.execute('INSERT INTO items (embedding) VALUES (%s)', (embedding,))

Get the nearest neighbors to a vector

conn.execute('SELECT * FROM items ORDER BY embedding <-> %s LIMIT 5', (embedding,)).fetchall()

Add an approximate index

conn.execute('CREATE INDEX ON items USING hnsw (embedding vector_l2_ops)') # or conn.execute('CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100)')

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

Psycopg 2

Enable the extension

cur = conn.cursor() cur.execute('CREATE EXTENSION IF NOT EXISTS vector')

Register the vector type with your connection or cursor

from pgvector.psycopg2 import register_vector register_vector(conn)

Create a table

cur.execute('CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3))')

Insert a vector

embedding = np.array([1, 2, 3]) cur.execute('INSERT INTO items (embedding) VALUES (%s)', (embedding,))

Get the nearest neighbors to a vector

cur.execute('SELECT * FROM items ORDER BY embedding <-> %s LIMIT 5', (embedding,)) cur.fetchall()

Add an approximate index

cur.execute('CREATE INDEX ON items USING hnsw (embedding vector_l2_ops)') # or cur.execute('CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100)')

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

asyncpg

Enable the extension

await conn.execute('CREATE EXTENSION IF NOT EXISTS vector')

Register the vector type with your connection

from pgvector.asyncpg import register_vector await register_vector(conn)

or your pool

async def init(conn): await register_vector(conn) pool = await asyncpg.create_pool(..., init=init)

Create a table

await conn.execute('CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3))')

Insert a vector

embedding = np.array([1, 2, 3]) await conn.execute('INSERT INTO items (embedding) VALUES ($1)', embedding)

Get the nearest neighbors to a vector

await conn.fetch('SELECT * FROM items ORDER BY embedding <-> $1 LIMIT 5', embedding)

Add an approximate index

await conn.execute('CREATE INDEX ON items USING hnsw (embedding vector_l2_ops)') # or await conn.execute('CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100)')

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

Peewee

Add a vector column

from pgvector.peewee import VectorField class Item(BaseModel): embedding = VectorField(dimensions=3)

Insert a vector

item = Item.create(embedding=[1, 2, 3])

Get the nearest neighbors to a vector

Item.select().order_by(Item.embedding.l2_distance([3, 1, 2])).limit(5)

Also supports max_inner_product and cosine_distance

Get the distance

Item.select(Item.embedding.l2_distance([3, 1, 2]).alias('distance'))

Get items within a certain distance

Item.select().where(Item.embedding.l2_distance([3, 1, 2]) < 5)

Average vectors

from peewee import fn Item.select(fn.avg(Item.embedding)).scalar()

Also supports sum

Add an approximate index

Item.add_index('embedding vector_l2_ops', using='hnsw')

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

History

View the changelog

Contributing

Everyone is encouraged to help improve this project. Here are a few ways you can help:

To get started with development:

git clone https://github.com/pgvector/pgvector-python.git cd pgvector-python pip install -r requirements.txt createdb pgvector_python_test pytest

About

pgvector support for Python

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.5%
  • Makefile 0.5%