Skip to content

ouzoh/Deep-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 

Repository files navigation

Deep-Learning

Deep Learning Exploration

Software Setup

Build

  1. Motherboard Central Nervous System $80
  2. Case Skeleton $40
  3. Ram Short Term Memory like Pre-frontal Lobe $203
  4. CPU Brain: perform tasks $229
  5. Hard Drive 4T Long term memory like Hippocampus $130
  6. GTX 1070 Ti 8GB Eye: generate/compute output to display $499
  7. Power Supply Heart $77
  8. Heat Sink $30

Since this project is centred on fastai course, Ubuntu 16.04 LTS (Long Term Support) will be installed. This can be downloaded here

Install Ubuntu

  1. Create a bootable Ubuntu USB stick
  1. Press F11 and boot from stick
  2. Optional: boot directly to terminal
  3. If you get below error, check this answer:
No root file system is defined. Please correct this from the partitioning menu. 
  1. To jump to terminal if you notice any error.
Ctrl + Alt + F2 

Ensure system is up to date and has basic build tools

sudo apt-get update sudo apt-get --assume-yes upgrade sudo apt-get --assume-yes install tmux build-essential gcc g++ make binutils sudo apt-get --assume-yes install software-properties-common 

Download and Install GPU Driver

See Install Nvidia driver for alternative resource.

wget "http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_8.0.44-1_amd64.deb" -O "cuda-repo-ubuntu1604_8.0.44-1_amd64.deb" sudo dpkg -i cuda-repo-ubuntu1604_8.0.44-1_amd64.deb sudo apt-get update sudo apt-get -y install cuda sudo apt-get install cuda-toolkit-8.0 ~~sudo modprobe nvidia~~ reboot nvidia-smi 

Install Anaconda

mkdir downloads cd downloads wget "https://repo.continuum.io/archive/Anaconda2-4.2.0-Linux-x86_64.sh" -O "Anaconda2-4.2.0-Linux-x86_64.sh" bash "Anaconda2-4.2.0-Linux-x86_64.sh" -b echo "export PATH=\"$HOME/anaconda2/bin:\$PATH\"" >> ~/.bashrc export PATH="$HOME/anaconda2/bin:$PATH" conda install -y bcolz conda upgrade -y --all 

Create a virtual environment

pip install virtualenv virtualenv --version cd mkdir -p Deep-Learning/fastai/ cd Deep-Learning/fastai/ virtualenv fastai source fastai/bin/activate 

Install theano

pip install theano echo "[global] device = gpu floatX = float32 [cuda] root = /usr/local/cuda" > ~/.theanorc 

Install and Configure keras

pip install keras==1.2.2 mkdir ~/.keras echo '{ "image_dim_ordering": "th", "epsilon": 1e-07, "floatx": "float32", "backend": "theano" }' > ~/.keras/keras.json 

install cudnn libraries

wget "http://files.fast.ai/files/cudnn.tgz" -O "cudnn.tgz" tar -zxf cudnn.tgz cd cuda sudo cp lib64/* /usr/local/cuda/lib64/ sudo cp include/* /usr/local/cuda/include/ 

configure jupyter

jupyter notebook --generate-config

Troubleshooting GPU Install

If you get below error:

The distribution-provided pre-install script failed! Are you sure you want to continue? 

Try:

sudo update-initramfs -u 

Then proceed with:

cd /Downloads chmod +x NVIDIA-Linux-*-384.90.run sudo sh NVIDIA-Linux-*-384.90.run 

If you get below error:

ERROR: You appear to be running an X server; please exit X before installing. For further details, please see the section INSTALLING THE NVIDIA DRIVER in the README available on the Linux driver download page at www.nvidia.com. 

https://unix.stackexchange.com/questions/25668/how-to-close-x-server-to-avoid-errors-while-updating-nvidia-driver
To stop:

sudo init 3

To resume:

sudo init 5

How to Find if Linux is Running on 32-bit or 64-bit? uname -a

uname -m

arch https://www.fastwebhost.in/blog/how-to-find-if-linux-is-running-on-32-bit-or-64-bit/

Resource for ins https://blog.slavv.com/the-1700-great-deep-learning-box-assembly-setup-and-benchmarks-148c5ebe6415

About

Deep Learning Exploration

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages