Skip to content

nodalytics/aiomql

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Aiomql - Bot Building Framework and Asynchronous MetaTrader5 Library

GitHub GitHub issues PyPI

Installation

pip install aiomql

Key Features

  • Asynchronous Python Library For MetaTrader5
  • Asynchronous Bot Building Framework
  • Build bots for trading in different financial markets.
  • Use threadpool executors to run multiple strategies on multiple instruments concurrently
  • Records and keep track of trades and strategies in csv files.
  • Helper classes for Bot Building. Easy to use and extend.
  • Compatible with pandas-ta.
  • Sample Pre-Built strategies
  • Specify and Manage Trading Sessions
  • Risk Management
  • Backtesting Engine
  • Run multiple bots concurrently with different accounts from the same broker or different brokers
  • Easy to use and very accurate backtesting engine

As an asynchronous MetaTrader5 Libray

import asyncio from aiomql import MetaTrader async def main(): mt5 = MetaTrader() res = await mt5.initialize(login=31288540, password='nwa0#anaEze', server='Deriv-Demo') if not res: print('Unable to login and initialize') return # get account information acc = await mt5.account_info() print(acc) # get symbols symbols = await mt5.symbols_get() print(symbols) asyncio.run(main())

As a Bot Building FrameWork using a Sample Strategy

Aiomql allows you to focus on building trading strategies and not worry about the underlying infrastructure. It provides a simple and easy to use framework for building bots with rich features and functionalities.

from datetime import time import logging from aiomql import Bot, ForexSymbol, FingerTrap, Session, Sessions, RAM, SimpleTrader, TimeFrame, Chaos logging.basicConfig(level=logging.INFO) def build_bot(): bot = Bot() # configure the parameters and the trader for a strategy params = {'fast_period': 8, 'slow_period': 34, 'etf': TimeFrame.M5} symbols = ['GBPUSD', 'AUDUSD', 'USDCAD', 'EURGBP', 'EURUSD'] symbols = [ForexSymbol(name=sym) for sym in symbols] strategies = [FingerTrap(symbol=sym, params=params)for sym in symbols] bot.add_strategies(strategies) # create a strategy that uses sessions # sessions are used to specify the trading hours for a particular market # the strategy will only trade during the specified sessions london = Session(name='London', start=time(8, 0), end=time(16, 0)) new_york = Session(name='New York', start=time(13, 0), end=time(21, 0)) tokyo = Session(name='Tokyo', start=time(0, 0), end=time(8, 0)) sessions = Sessions(sessions=[london, new_york, tokyo]) jpy_strategy = Chaos(symbol=ForexSymbol(name='USDJPY'), sessions=sessions) bot.add_strategy(strategy=jpy_strategy) bot.execute() # run the bot build_bot()

Backtesting

Aiomql provides a very accurate backtesting engine that allows you to test your trading strategies before deploying them in the market. The backtest engine prioritizes accuracy over speed, but allows you to increase the speed as desired. It is very easy to use and provides a lot of flexibility. The backtester is designed to run strategies seamlessly without need for modification of the strategy code. When running in backtest mode all the classes that needs to know if they are running in backtest mode will be able to do so and adjust their behavior accordingly.

from aiomql import MetaBackTester, BackTestEngine, MetaTrader import logging from datetime import datetime, UTC from aiomql.lib.backtester import BackTester from aiomql.core import Config from aiomql.contrib.strategies import FingerTrap from aiomql.contrib.symbols import ForexSymbol from aiomql.core.backtesting import BackTestEngine def back_tester(): config = Config(mode="backtest") logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s") syms = ["Volatility 75 Index", "Volatility 100 Index", "Volatility 25 Index", "Volatility 10 Index"] symbols = [ForexSymbol(name=sym) for sym in syms] strategies = [FingerTrap(symbol=symbol) for symbol in symbols] # create start time and end time for the backtest start = datetime(2024, 5, 1, tzinfo=UTC) stop_time = datetime(2024, 5, 2, tzinfo=UTC) end = datetime(2024, 5, 7, tzinfo=UTC) # create a backtest engine back_test_engine = BackTestEngine(start=start, end=end, speed=3600, stop_time=stop_time, close_open_positions_on_exit=True, assign_to_config=True, preload=True, account_info={"balance": 350}) # add it to the backtester backtester = BackTester(backtest_engine=back_test_engine) # add strategies to the backtester backtester.add_strategies(strategies=strategies) backtester.execute() back_tester()

Writing a Custom Strategy

Aiomql provides a simple and easy to use framework for building trading strategies. You can easily extend the framework to build your own custom strategies. Below is an example of a simple strategy that buys when the fast moving average crosses above the slow moving average and sells when the fast moving average crosses below the slow moving average.

# emaxover.py from aiomql import Strategy, ForexSymbol, TimeFrame, Tracker, OrderType, Sessions, Trader, ScalpTrader class EMAXOver(Strategy): ttf: TimeFrame # time frame for the strategy tcc: int # how many candles to consider fast_ema: int # fast moving average period slow_ema: int # slow moving average period tracker: Tracker # tracker to keep track of strategy state interval: TimeFrame # intervals to check for entry and exit signals timeout: int # timeout after placing an order in seconds # default parameters for the strategy # they are set as attributes. You can override them in the constructor via the params argument. parameters = {'ttf': TimeFrame.H1, 'tcc': 3000, 'fast_ema': 34, 'slow_ema': 55, 'interval': TimeFrame.M15, 'timeout': 3 * 60 * 60} def __init__(self, *, symbol: ForexSymbol, params: dict | None = None, trader: Trader = None, sessions: Sessions = None, name: str = "EMAXOver"): super().__init__(symbol=symbol, params=params, sessions=sessions, name=name) self.tracker = Tracker(snooze=self.interval.seconds) self.trader = trader or ScalpTrader(symbol=self.symbol) async def find_entry(self): # get the candles candles = await self.symbol.copy_rates_from_pos(timeframe=self.ttf, start_position=0, count=self.tcc) # get the fast moving average candles.ta.ema(length=self.fast_ema, append=True) # get the slow moving average candles.ta.ema(length=self.slow_ema, append=True) # rename the columns candles.rename(**{f"EMA_{self.fast_ema}": "fast_ema", f"EMA_{self.slow_ema}": "slow_ema"}, inplace=True) # check for crossovers # fast above slow fas = candles.ta_lib.cross(candles.fast_ema, candles.slow_ema, above=True) # fast below slow fbs = candles.ta_lib.cross(candles.fast_ema, candles.slow_ema, above=False) ## check for entry signals in the current candle if fas.iloc[-1]: self.tracker.update(order_type=OrderType.BUY, snooze=self.timeout) elif fbs.iloc[-1]: self.tracker.update(order_type=OrderType.SELL, snooze=self.timeout) else: self.tracker.update(order_type=None, snooze=self.interval.seconds) async def trade(self): await self.find_entry() if self.tracker.order_type is None: await self.sleep(secs=self.tracker.snooze) else: await self.trader.place_trade(order_type=self.tracker.order_type, parameters=self.parameters) await self.delay(secs=self.tracker.snooze)

Testing

Run the tests with pytest

pytest tests

API Documentation

see API Documentation for more details

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Changelog

See CHANGELOG for more details

Support

Feeling generous, like the package or want to see it become a more mature package?

Consider supporting the project by buying me a coffee.

"Buy Me A Coffee"

About

Asynchronous Python Library For MetaTrader 5

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%