Skip to content

langchain-ai/langchain-mcp-adapters

LangChain MCP Adapters

This library provides a lightweight wrapper that makes Anthropic Model Context Protocol (MCP) tools compatible with LangChain and LangGraph.

MCP

Note

A JavaScript/TypeScript version of this library is also available at langchainjs.

Features

  • πŸ› οΈ Convert MCP tools into LangChain tools that can be used with LangGraph agents
  • πŸ“¦ A client implementation that allows you to connect to multiple MCP servers and load tools from them

Installation

pip install langchain-mcp-adapters

Quickstart

Here is a simple example of using the MCP tools with a LangGraph agent.

pip install langchain-mcp-adapters langgraph "langchain[openai]" export OPENAI_API_KEY=<your_api_key>

Server

First, let's create an MCP server that can add and multiply numbers.

# math_server.py from mcp.server.fastmcp import FastMCP mcp = FastMCP("Math") @mcp.tool() def add(a: int, b: int) -> int: """Add two numbers""" return a + b @mcp.tool() def multiply(a: int, b: int) -> int: """Multiply two numbers""" return a * b if __name__ == "__main__": mcp.run(transport="stdio")

Client

# Create server parameters for stdio connection from mcp import ClientSession, StdioServerParameters from mcp.client.stdio import stdio_client from langchain_mcp_adapters.tools import load_mcp_tools from langchain.agents import create_agent server_params = StdioServerParameters( command="python", # Make sure to update to the full absolute path to your math_server.py file args=["/path/to/math_server.py"], ) async with stdio_client(server_params) as (read, write): async with ClientSession(read, write) as session: # Initialize the connection await session.initialize() # Get tools tools = await load_mcp_tools(session) # Create and run the agent agent = create_agent("openai:gpt-4.1", tools) agent_response = await agent.ainvoke({"messages": "what's (3 + 5) x 12?"})

Multiple MCP Servers

The library also allows you to connect to multiple MCP servers and load tools from them:

Server

# math_server.py ... # weather_server.py from typing import List from mcp.server.fastmcp import FastMCP mcp = FastMCP("Weather") @mcp.tool() async def get_weather(location: str) -> str: """Get weather for location.""" return "It's always sunny in New York" if __name__ == "__main__": mcp.run(transport="http")
python weather_server.py

Client

from langchain_mcp_adapters.client import MultiServerMCPClient from langchain.agents import create_agent client = MultiServerMCPClient( { "math": { "command": "python", # Make sure to update to the full absolute path to your math_server.py file "args": ["/path/to/math_server.py"], "transport": "stdio", }, "weather": { # Make sure you start your weather server on port 8000 "url": "http://localhost:8000/mcp", "transport": "http", } } ) tools = await client.get_tools() agent = create_agent("openai:gpt-4.1", tools) math_response = await agent.ainvoke({"messages": "what's (3 + 5) x 12?"}) weather_response = await agent.ainvoke({"messages": "what is the weather in nyc?"})

Note

Example above will start a new MCP ClientSession for each tool invocation. If you would like to explicitly start a session for a given server, you can do:

from langchain_mcp_adapters.tools import load_mcp_tools client = MultiServerMCPClient({...}) async with client.session("math") as session: tools = await load_mcp_tools(session)

Streamable HTTP

MCP now supports streamable HTTP transport.

To start an example streamable HTTP server, run the following:

cd examples/servers/streamable-http-stateless/ uv run mcp-simple-streamablehttp-stateless --port 3000

Alternatively, you can use FastMCP directly (as in the examples above).

To use it with Python MCP SDK streamablehttp_client:

# Use server from examples/servers/streamable-http-stateless/ from mcp import ClientSession from mcp.client.streamable_http import streamablehttp_client from langchain.agents import create_agent from langchain_mcp_adapters.tools import load_mcp_tools async with streamablehttp_client("http://localhost:3000/mcp") as (read, write, _): async with ClientSession(read, write) as session: # Initialize the connection await session.initialize() # Get tools tools = await load_mcp_tools(session) agent = create_agent("openai:gpt-4.1", tools) math_response = await agent.ainvoke({"messages": "what's (3 + 5) x 12?"})

Use it with MultiServerMCPClient:

# Use server from examples/servers/streamable-http-stateless/ from langchain_mcp_adapters.client import MultiServerMCPClient from langchain.agents import create_agent client = MultiServerMCPClient( { "math": { "transport": "http", "url": "http://localhost:3000/mcp" }, } ) tools = await client.get_tools() agent = create_agent("openai:gpt-4.1", tools) math_response = await agent.ainvoke({"messages": "what's (3 + 5) x 12?"})

Passing runtime headers

When connecting to MCP servers, you can include custom headers (e.g., for authentication or tracing) using the headers field in the connection configuration. This is supported for the following transports:

  • sse
  • http (or streamable_http)

Example: passing headers with MultiServerMCPClient

from langchain_mcp_adapters.client import MultiServerMCPClient from langchain.agents import create_agent client = MultiServerMCPClient( { "weather": { "transport": "http", "url": "http://localhost:8000/mcp", "headers": { "Authorization": "Bearer YOUR_TOKEN", "X-Custom-Header": "custom-value" }, } } ) tools = await client.get_tools() agent = create_agent("openai:gpt-4.1", tools) response = await agent.ainvoke({"messages": "what is the weather in nyc?"})

Only sse and http transports support runtime headers. These headers are passed with every HTTP request to the MCP server.

Using with LangGraph StateGraph

from langchain_mcp_adapters.client import MultiServerMCPClient from langgraph.graph import StateGraph, MessagesState, START from langgraph.prebuilt import ToolNode, tools_condition from langchain.chat_models import init_chat_model model = init_chat_model("openai:gpt-4.1") client = MultiServerMCPClient( { "math": { "command": "python", # Make sure to update to the full absolute path to your math_server.py file "args": ["./examples/math_server.py"], "transport": "stdio", }, "weather": { # make sure you start your weather server on port 8000 "url": "http://localhost:8000/mcp", "transport": "http", } } ) tools = await client.get_tools() def call_model(state: MessagesState): response = model.bind_tools(tools).invoke(state["messages"]) return {"messages": response} builder = StateGraph(MessagesState) builder.add_node(call_model) builder.add_node(ToolNode(tools)) builder.add_edge(START, "call_model") builder.add_conditional_edges( "call_model", tools_condition, ) builder.add_edge("tools", "call_model") graph = builder.compile() math_response = await graph.ainvoke({"messages": "what's (3 + 5) x 12?"}) weather_response = await graph.ainvoke({"messages": "what is the weather in nyc?"})

Using with LangGraph API Server

Tip

Check out this guide on getting started with LangGraph API server.

If you want to run a LangGraph agent that uses MCP tools in a LangGraph API server, you can use the following setup:

# graph.py from contextlib import asynccontextmanager from langchain_mcp_adapters.client import MultiServerMCPClient from langchain.agents import create_agent async def make_graph(): client = MultiServerMCPClient( { "weather": { # make sure you start your weather server on port 8000 "url": "http://localhost:8000/mcp", "transport": "http", }, # ATTENTION: MCP's stdio transport was designed primarily to support applications running on a user's machine. # Before using stdio in a web server context, evaluate whether there's a more appropriate solution. # For example, do you actually need MCP? or can you get away with a simple `@tool`? "math": { "command": "python", # Make sure to update to the full absolute path to your math_server.py file "args": ["/path/to/math_server.py"], "transport": "stdio", }, } ) tools = await client.get_tools() agent = create_agent("openai:gpt-4.1", tools) return agent

In your langgraph.json make sure to specify make_graph as your graph entrypoint:

{ "dependencies": ["."], "graphs": { "agent": "./graph.py:make_graph" } }