Skip to content

kevincobain2000/jProcessing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Japanese NLP Library


Back to Home
  • All code at jProcessing Repo GitHub
  • PyPi Python Package
clone git@github.com:kevincobain2000/jProcessing.git 

In Terminal

bash$ python setup.py install 
  • 0.2

    • Sentiment Analysis of Japanese Text
  • 0.1
    • Morphologically Tokenize Japanese Sentence
    • Kanji / Hiragana / Katakana to Romaji Converter
    • Edict Dictionary Search - borrowed
    • Edict Examples Search - incomplete
    • Sentence Similarity between two JP Sentences
    • Run Cabocha(ISO--8859-1 configured) in Python.
    • Longest Common String between Sentences
    • Kanji to Katakana Pronunciation
    • Hiragana, Katakana Chart Parser

In Python

>>> from jNlp.jTokenize import jTokenize >>> input_sentence = u'私は彼を5日前、つまりこの前の金曜日に駅で見かけた' >>> list_of_tokens = jTokenize(input_sentence) >>> print list_of_tokens >>> print '--'.join(list_of_tokens).encode('utf-8') 

Returns:

... [u'\u79c1', u'\u306f', u'\u5f7c', u'\u3092', u'\uff15'...] ... 私--は--彼--を--5--日--前--、--つまり--この--前--の--金曜日--に--駅--で--見かけ--た 

Katakana Pronunciation:

>>> print '--'.join(jReads(input_sentence)).encode('utf-8') ... ワタシ--ハ--カレ--ヲ--ゴ--ニチ--マエ--、--ツマリ--コノ--マエ--ノ--キンヨウビ--ニ--エキ--デ--ミカケ--タ 

Run Cabocha with original EUCJP or IS0-8859-1 configured encoding, with utf8 python

>>> from jNlp.jCabocha import cabocha >>> print cabocha(input_sentence).encode('utf-8')

Output:

<sentence> <chunk id="0" link="8" rel="D" score="0.971639" head="0" func="1"> <tok id="0" read="ワタシ" base="" pos="名詞-代名詞-一般" ctype="" cform="" ne="O">私</tok> <tok id="1" read="" base="" pos="助詞-係助詞" ctype="" cform="" ne="O">は</tok> </chunk> <chunk id="1" link="2" rel="D" score="0.488672" head="2" func="3"> <tok id="2" read="カレ" base="" pos="名詞-代名詞-一般" ctype="" cform="" ne="O">彼</tok> <tok id="3" read="" base="" pos="助詞-格助詞-一般" ctype="" cform="" ne="O">を</tok> </chunk> <chunk id="2" link="8" rel="D" score="2.25834" head="6" func="6"> <tok id="4" read="" base="" pos="名詞-数" ctype="" cform="" ne="B-DATE">5</tok> <tok id="5" read="ニチ" base="" pos="名詞-接尾-助数詞" ctype="" cform="" ne="I-DATE">日</tok> <tok id="6" read="マエ" base="" pos="名詞-副詞可能" ctype="" cform="" ne="I-DATE">前</tok> <tok id="7" read="" base="" pos="記号-読点" ctype="" cform="" ne="O">、</tok> </chunk>

Uses data/katakanaChart.txt and parses the chart. See katakanaChart.

>>> from jNlp.jConvert import * >>> input_sentence = u'気象庁が21日午前4時48分、発表した天気概況によると、' >>> print ' '.join(tokenizedRomaji(input_sentence)) >>> print tokenizedRomaji(input_sentence)
...kisyoutyou ga ni ichi nichi gozen yon ji yon hachi hun hapyou si ta tenki gaikyou ni yoru to ...[u'kisyoutyou', u'ga', u'ni', u'ichi', u'nichi', u'gozen',...]

katakanaChart.txt

On English Strings

>>> from jNlp.jProcessing import long_substr >>> a = 'Once upon a time in Italy' >>> b = 'Thre was a time in America' >>> print long_substr(a, b) 

Output

...a time in 

On Japanese Strings

>>> a = u'これでアナタも冷え知らず' >>> b = u'これでア冷え知らずナタも' >>> print long_substr(a, b).encode('utf-8') 

Output

...冷え知らず 

Uses MinHash by checking the overlap http://en.wikipedia.org/wiki/MinHash

English Strings:
>>> from jNlp.jProcessing import Similarities >>> s = Similarities() >>> a = 'There was' >>> b = 'There is' >>> print s.minhash(a,b) ...0.444444444444
Japanese Strings:
>>> from jNlp.jProcessing import * >>> a = u'これは何ですか?' >>> b = u'これはわからないです' >>> print s.minhash(' '.join(jTokenize(a)), ' '.join(jTokenize(b))) ...0.210526315789

This package uses the EDICT and KANJIDIC dictionary files. These files are the property of the Electronic Dictionary Research and Development Group , and are used in conformance with the Group's licence .

Edict Parser By Paul Goins, see edict_search.py Edict Example sentences Parse by query, Pulkit Kathuria, see edict_examples.py Edict examples pickle files are provided but latest example files can be downloaded from the links provided.

Two files

  • utf8 Charset example file if not using src/jNlp/data/edict_examples

    To convert EUCJP/ISO-8859-1 to utf8

    iconv -f EUCJP -t UTF-8 path/to/edict_examples > path/to/save_with_utf-8 
  • ISO-8859-1 edict_dictionary file

Outputs example sentences for a query in Japanese only for ambiguous words.

Latest Dictionary files can be downloaded here

author:Paul Goins License included linkToOriginal:

For all entries of sense definitions

>>> from jNlp.edict_search import * >>> query = u'認める' >>> edict_path = 'src/jNlp/data/edict-yy-mm-dd' >>> kp = Parser(edict_path) >>> for i, entry in enumerate(kp.search(query)): ... print entry.to_string().encode('utf-8')
Note:Only outputs the examples sentences for ambiguous words (if word has one or more senses)
author:Pulkit Kathuria
>>> from jNlp.edict_examples import * >>> query = u'認める' >>> edict_path = 'src/jNlp/data/edict-yy-mm-dd' >>> edict_examples_path = 'src/jNlp/data/edict_examples' >>> search_with_example(edict_path, edict_examples_path, query)

Output

認める Sense (1) to recognize; EX:01 我々は彼の才能を*認*めている。We appreciate his talent. Sense (2) to observe; EX:01 x線写真で異状が*認*められます。We have detected an abnormality on your x-ray. Sense (3) to admit; EX:01 母は私の計画をよいと*認*めた。Mother approved my plan. EX:02 母は決して私の結婚を*認*めないだろう。Mother will never approve of my marriage. EX:03 父は決して私の結婚を*認*めないだろう。Father will never approve of my marriage. EX:04 彼は女性の喫煙をいいものだと*認*めない。He doesn't approve of women smoking. ... 

This section covers (1) Sentiment Analysis on Japanese text using Word Sense Disambiguation, Wordnet-jp (Japanese Word Net file name wnjpn-all.tab), SentiWordnet (English SentiWordNet file name SentiWordNet_3.*.txt).

  1. http://nlpwww.nict.go.jp/wn-ja/eng/downloads.html
  2. http://sentiwordnet.isti.cnr.it/

The following classifier is baseline, which works as simple mapping of Eng to Japanese using Wordnet and classify on polarity score using SentiWordnet.

  • (Adnouns, nouns, verbs, .. all included)
  • No WSD module on Japanese Sentence
  • Uses word as its common sense for polarity score
>>> from jNlp.jSentiments import * >>> jp_wn = '../../../../data/wnjpn-all.tab' >>> en_swn = '../../../../data/SentiWordNet_3.0.0_20100908.txt' >>> classifier = Sentiment() >>> classifier.train(en_swn, jp_wn) >>> text = u'監督、俳優、ストーリー、演出、全部最高!' >>> print classifier.baseline(text) ...Pos Score = 0.625 Neg Score = 0.125 ...Text is Positive
>>> from jNlp.jSentiments import * >>> jp_wn = '_dicts/wnjpn-all.tab' #path to Japanese Word Net >>> en_swn = '_dicts/SentiWordNet_3.0.0_20100908.txt' #Path to SentiWordNet >>> classifier = Sentiment() >>> sentiwordnet, jpwordnet = classifier.train(en_swn, jp_wn) >>> positive_score = sentiwordnet[jpwordnet[u'全部']][0] >>> negative_score = sentiwordnet[jpwordnet[u'全部']][1] >>> print 'pos score = {0}, neg score = {1}'.format(positive_score, negative_score) ...pos score = 0.625, neg score = 0.0
Author:pulkit[at]jaist.ac.jp [change at with @]

About

Japanese Natural Langauge Processing Libraries

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •