Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
164 changes: 164 additions & 0 deletions egs/librispeech/s5/local/rnnlm/tuning/run_tdnn_lstm_1a.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,164 @@
#!/bin/bash

# Copyright 2012 Johns Hopkins University (author: Daniel Povey)
# 2018 Ke Li

# This script trains LMs on the librispeech 960 hours training data.

# rnnlm/train_rnnlm.sh: best iteration (out of 26) was 21, linking it to final iteration.
# rnnlm/train_rnnlm.sh: train/dev perplexity was 118.4 / 152.6.
# Train objf: -5.74 -5.51 -5.38 -5.29 -5.22 -5.16 -5.12 -5.08 -5.05 -5.02 -4.99 -4.97 -4.97 -4.93 -4.90 -4.87 -4.84 -4.82 -4.79 -4.77 -4.75 -4.73 -4.71 -4.69 -4.67
# Dev objf: -6.00 -5.61 -5.45 -5.36 -5.29 -5.24 -5.20 -5.18 -5.16 -5.13 -5.12 -5.11 -5.11 -5.09 -5.07 -5.06 -5.05 -5.04 -5.03 -5.03 -5.03 -5.03 -5.03 -5.03 -5.03 -5.03

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you please include some WER comparisons?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

sure, I have WER numbers on an old chain model. I'm running a new one now. will update the rescoring results on that in a few days.

# WER summary on dev and test sets
# System tdnn_1d_sp +lattice_rescore +nbest_rescore
# WER on dev(fglarge) 3.34 2.97 2.98
# WER on dev(tglarge) 3.44 3.02 3.07
# WER on dev_other(fglarge) 8.70 7.98 8.00
# WER on dev_other(tglarge) 9.25 8.28 8.35
# WER on test(fglarge) 3.77 3.41 3.40
# WER on test(tglarge) 3.85 3.50 3.47
# WER on test_other(fglarge) 8.91 8.22 8.21
# WER on test_other(tglarge) 9.31 8.55 8.49

# command to get the WERs above:
# tdnn_1d_sp
# for test in dev_clean test_clean dev_other test_other; do for lm in fglarge tglarge; do grep WER exp/chain_cleaned/tdnn_1d_sp/decode_${test}_${lm}/wer* | best_wer.sh; done; done
# tdnn_1d_sp with lattice rescoring
# for test in dev_clean test_clean dev_other test_other; do for lm in fglarge tglarge; do grep WER exp/chain_cleaned/tdnn_1d_sp/decode_${test}_${lm}_rnnlm_1a_rescore/wer* | best_wer.sh; done; done
# tdnn_1d_sp with nbest rescoring
# for test in dev_clean test_clean dev_other test_other; do for lm in fglarge tglarge; do grep WER exp/chain_cleaned/tdnn_1d_sp/decode_${test}_${lm}_rnnlm_1a_nbest_rescore/wer* | best_wer.sh; done; done

# Begin configuration section.

dir=exp/rnnlm_lstm_1a
embedding_dim=1024
lstm_rpd=256
lstm_nrpd=256
stage=-10
train_stage=-10
epochs=20

# variables for lattice rescoring
run_lat_rescore=true
run_nbest_rescore=true
run_backward_rnnlm=false
ac_model_dir=exp/chain_cleaned/tdnn_1d_sp
decode_dir_suffix=rnnlm_1a
ngram_order=4 # approximate the lattice-rescoring by limiting the max-ngram-order
# if it's set, it merges histories in the lattice if they share
# the same ngram history and this prevents the lattice from
# exploding exponentially
pruned_rescore=true

. ./cmd.sh
. ./utils/parse_options.sh

# test of 960 hours training transcriptions
text=data/train_960/text
lexicon=data/lang_nosp/words.txt
text_dir=data/rnnlm/text_960_1a
mkdir -p $dir/config
set -e

for f in $text $lexicon; do
[ ! -f $f ] && \
echo "$0: expected file $f to exist; search for run.sh in run.sh" && exit 1
done

if [ $stage -le 0 ]; then
mkdir -p $text_dir
echo -n >$text_dir/dev.txt
# hold out one in every 50 lines as dev data.
cat $text | cut -d ' ' -f2- | awk -v text_dir=$text_dir '{if(NR%50 == 0) { print >text_dir"/dev.txt"; } else {print;}}' >$text_dir/librispeech.txt
fi

if [ $stage -le 1 ]; then
cp $lexicon $dir/config/
n=`cat $dir/config/words.txt | wc -l`
echo "<brk> $n" >> $dir/config/words.txt

# words that are not present in words.txt but are in the training or dev data, will be
# mapped to <SPOKEN_NOISE> during training.
echo "<UNK>" >$dir/config/oov.txt

cat > $dir/config/data_weights.txt <<EOF
librispeech 1 1.0
EOF

rnnlm/get_unigram_probs.py --vocab-file=$dir/config/words.txt \
--unk-word="<UNK>" \
--data-weights-file=$dir/config/data_weights.txt \
$text_dir | awk 'NF==2' >$dir/config/unigram_probs.txt

# choose features
rnnlm/choose_features.py --unigram-probs=$dir/config/unigram_probs.txt \
--top-word-features=5000 \
--use-constant-feature=true \
--special-words='<s>,</s>,<brk>,<UNK>,<SPOKEN_NOISE>' \
$dir/config/words.txt > $dir/config/features.txt

cat >$dir/config/xconfig <<EOF
input dim=$embedding_dim name=input
relu-renorm-layer name=tdnn1 dim=$embedding_dim input=Append(0, IfDefined(-1))
fast-lstmp-layer name=lstm1 cell-dim=$embedding_dim recurrent-projection-dim=$lstm_rpd non-recurrent-projection-dim=$lstm_nrpd
relu-renorm-layer name=tdnn2 dim=$embedding_dim input=Append(0, IfDefined(-3))
fast-lstmp-layer name=lstm2 cell-dim=$embedding_dim recurrent-projection-dim=$lstm_rpd non-recurrent-projection-dim=$lstm_nrpd
relu-renorm-layer name=tdnn3 dim=$embedding_dim input=Append(0, IfDefined(-3))
output-layer name=output include-log-softmax=false dim=$embedding_dim
EOF
rnnlm/validate_config_dir.sh $text_dir $dir/config
fi

if [ $stage -le 2 ]; then
# the --unigram-factor option is set larger than the default (100)
# in order to reduce the size of the sampling LM, because rnnlm-get-egs
# was taking up too much CPU (as much as 10 cores).
rnnlm/prepare_rnnlm_dir.sh --unigram-factor 400 \
$text_dir $dir/config $dir
fi

if [ $stage -le 3 ]; then
rnnlm/train_rnnlm.sh --num-jobs-final 2 \
--stage $train_stage \
--num-epochs $epochs \
--cmd "$train_cmd" $dir
fi

if [ $stage -le 4 ] && $run_lat_rescore; then
echo "$0: Perform lattice-rescoring on $ac_model_dir"
# LM=tgsmall # if using the original 3-gram G.fst as old lm
pruned=
if $pruned_rescore; then
pruned=_pruned
fi
for decode_set in test_clean test_other dev_clean dev_other; do
for LM in fglarge tglarge; do
decode_dir=${ac_model_dir}/decode_${decode_set}_${LM}
# Lattice rescoring
rnnlm/lmrescore$pruned.sh \
--cmd "$decode_cmd --mem 8G" \
--weight 0.45 --max-ngram-order $ngram_order \
data/lang_test_$LM $dir \
data/${decode_set}_hires ${decode_dir} \
exp/chain_cleaned/tdnn_1d_sp/decode_${decode_set}_${LM}_${decode_dir_suffix}_rescore
done
done
fi

if [ $stage -le 5 ] && $run_nbest_rescore; then
echo "$0: Perform nbest-rescoring on $ac_model_dir"
for decode_set in test_clean test_other dev_clean dev_other; do
for LM in fglarge tglarge; do
decode_dir=${ac_model_dir}/decode_${decode_set}_${LM}
# Nbest rescoring
rnnlm/lmrescore_nbest.sh \
--cmd "$decode_cmd --mem 8G" --N 20 \
0.4 data/lang_test_$LM $dir \
data/${decode_set}_hires ${decode_dir} \
exp/chain_cleaned/tdnn_1d_sp/decode_${decode_set}_${LM}_${decode_dir_suffix}_nbest_rescore
done
done
fi

exit 0
1 change: 1 addition & 0 deletions egs/librispeech/s5/rnnlm