Skip to content

jeronimosg/gpgpu-rs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

gpgpu

GitHub Workflow Status (branch) Crates.io Crates.io docs.rs

An experimental async GPU compute library based on wgpu. It is meant to be used alongside wgpu if desired.

To start using gpgpu, just create a Framework instance and follow the examples in the main repository.

Example

Small program that multiplies 2 vectors A and B; and stores the result in another vector C.

Rust program

 use gpgpu::*; fn main() -> Result<(), Box<dyn std::error::Error>> { // Framework initialization let fw = Framework::default(); // Original CPU data let cpu_data = (0..10000).into_iter().collect::<Vec<u32>>(); // GPU buffer creation let buf_a = GpuBuffer::from_slice(&fw, &cpu_data); // Input let buf_b = GpuBuffer::from_slice(&fw, &cpu_data); // Input let buf_c = GpuBuffer::<u32>::with_capacity(&fw, cpu_data.len() as u64); // Output // Shader load from SPIR-V binary file let shader = Shader::from_spirv_file(&fw, "<SPIR-V shader path>")?; // or from a WGSL source file let shader = Shader::from_wgsl_file(&fw, "<WGSL shader path>")?; // Descriptor set and program creation let desc = DescriptorSet::default() .bind_buffer(&buf_a, GpuBufferUsage::ReadOnly) .bind_buffer(&buf_b, GpuBufferUsage::ReadOnly) .bind_buffer(&buf_c, GpuBufferUsage::ReadWrite); let program = Program::new(&shader, "main").add_descriptor_set(desc); // Entry point // Kernel creation and enqueuing Kernel::new(&fw, program).enqueue(cpu_data.len() as u32, 1, 1); // Enqueuing, not very optimus 😅 let output = buf_c.read_vec_blocking()?; // Read back C from GPU for (a, b) in cpu_data.into_iter().zip(output) { assert_eq!(a.pow(2), b); } Ok(()) }

Shader program

The shader is written in WGSL

// Vector type definition. Used for both input and output struct Vector { data: array<u32>, } // A, B and C vectors @group(0) @binding(0) var<storage, read> a: Vector; @group(0) @binding(1) var<storage, read> b: Vector; @group(0) @binding(2) var<storage, read_write> c: Vector; @compute @workgroup_size(1) fn main(@builtin(global_invocation_id) global_id: vec3<u32>) { c.data[global_id.x] = a.data[global_id.x] * b.data[global_id.x]; }

About

Simple experimental async GPGPU framework for Rust

Topics

Resources

License

Stars

Watchers

Forks

Contributors 3

  •  
  •  
  •  

Languages