- Notifications
You must be signed in to change notification settings - Fork 31.4k
[WIP] Fix weights initialization of several vision models #19449
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
NielsRogge wants to merge 6 commits into huggingface:main Choose a base branch from NielsRogge:vit_init_weights
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline, and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
6 commits Select commit Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| | @@ -857,17 +857,20 @@ class SwinPreTrainedModel(PreTrainedModel): | |
| main_input_name = "pixel_values" | ||
| supports_gradient_checkpointing = True | ||
| | ||
| def _init_weights(self, module): | ||
| def _init_weights(self, module) -> None: | ||
| ||
| """Initialize the weights""" | ||
| if isinstance(module, (nn.Linear, nn.Conv2d)): | ||
| # Slightly different from the TF version which uses truncated_normal for initialization | ||
| # cf https://github.com/pytorch/pytorch/pull/5617 | ||
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | ||
| torch.nn.init.trunc_normal_(module.weight.data, std=self.config.initializer_range) | ||
| if module.bias is not None: | ||
| module.bias.data.zero_() | ||
| elif isinstance(module, nn.LayerNorm): | ||
| module.bias.data.zero_() | ||
| module.weight.data.fill_(1.0) | ||
| elif isinstance(module, SwinEmbeddings): | ||
| if module.mask_token is not None: | ||
| torch.nn.init.trunc_normal_(module.mask_token.data, std=self.config.initializer_range) | ||
| if module.position_embeddings is not None: | ||
| torch.nn.init.trunc_normal_(module.position_embeddings.data, std=self.config.initializer_range) | ||
| | ||
| def _set_gradient_checkpointing(self, module, value=False): | ||
| if isinstance(module, SwinEncoder): | ||
| | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| | @@ -448,9 +448,9 @@ class ViTPreTrainedModel(PreTrainedModel): | |
| supports_gradient_checkpointing = True | ||
| _no_split_modules = [] | ||
| | ||
| def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: | ||
| def _init_weights(self, module) -> None: | ||
| ||
| """Initialize the weights""" | ||
| if isinstance(module, (nn.Linear, nn.Conv2d)): | ||
| if isinstance(module, nn.Linear): | ||
| # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid | ||
| # `trunc_normal_cpu` not implemented in `half` issues | ||
| module.weight.data = nn.init.trunc_normal_( | ||
| | @@ -461,6 +461,11 @@ def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> No | |
| elif isinstance(module, nn.LayerNorm): | ||
| module.bias.data.zero_() | ||
| module.weight.data.fill_(1.0) | ||
| elif isinstance(module, ViTEmbeddings): | ||
| module.cls_token.data.normal_(mean=0.0, std=self.config.cls_token_initializer_range) | ||
| if module.mask_token is not None: | ||
| torch.nn.init.trunc_normal_(module.mask_token.data, std=self.config.initializer_range) | ||
| torch.nn.init.trunc_normal_(module.position_embeddings.data, std=self.config.initializer_range) | ||
| | ||
| def _set_gradient_checkpointing(self, module: ViTEncoder, value: bool = False) -> None: | ||
| if isinstance(module, ViTEncoder): | ||
| | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit. This suggestion is invalid because no changes were made to the code. Suggestions cannot be applied while the pull request is closed. Suggestions cannot be applied while viewing a subset of changes. Only one suggestion per line can be applied in a batch. Add this suggestion to a batch that can be applied as a single commit. Applying suggestions on deleted lines is not supported. You must change the existing code in this line in order to create a valid suggestion. Outdated suggestions cannot be applied. This suggestion has been applied or marked resolved. Suggestions cannot be applied from pending reviews. Suggestions cannot be applied on multi-line comments. Suggestions cannot be applied while the pull request is queued to merge. Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can you make the equivalent initialization updates in the TF model?