A complete, reusable template for AI-enhanced development environments with local RAG, MCP integration, and visual service management.
This template provides a production-ready AI development ecosystem that you can deploy to any project in minutes:
- π§ Local RAG System - 2600+ document semantic search
- π€ MCP Server - AI agent integration protocol
- π File Manager - Documentation upload/organization
- ποΈ Control Panel - Visual service management
- βοΈ App Control Scripts - Command-line orchestration
- β Zero external dependencies - Works completely offline
- β Project-agnostic - Adapts to any codebase
- β AI-ready - Immediate integration with coding assistants
- β Professional UI - Enterprise-grade control interfaces
- β One-command setup - Automated deployment scripts
# Create new repo from template gh repo create my-ai-project --template hartou/ai-dev-toolkit-template # Deploy to existing project cd my-existing-project curl -sSL https://raw.githubusercontent.com/hartou/ai-dev-toolkit-template/main/scripts/deploy.sh | bash# Install globally npm install -g ai-dev-toolkit # Deploy to any project cd my-project ai-dev-toolkit init ai-dev-toolkit start# Clone template git clone https://github.com/hartou/ai-dev-toolkit-template.git cd ai-dev-toolkit-template # Configure and deploy ./scripts/setup.sh ./scripts/deploy.sh /path/to/target/projectai-dev-toolkit-template/ βββ π¦ core/ # Core reusable components β βββ rag-system/ # RAG engine + database β βββ mcp-server/ # Model Context Protocol server β βββ file-manager/ # Documentation management β βββ control-panel/ # Service orchestration UI β βββ shared/ # Common utilities βββ π§ scripts/ # Automation and deployment β βββ deploy.sh # Deploy to existing project β βββ setup.sh # Initial configuration β βββ app-control.sh # Service management β βββ templates/ # Configuration templates βββ π configs/ # Default configurations β βββ package.template.json # NPM dependencies β βββ docker-compose.yml # Container deployment β βββ .env.template # Environment variables βββ π docs/ # Documentation and guides βββ π§ͺ examples/ # Integration examples The toolkit automatically adapts to your project structure:
# Auto-detect project type ./scripts/detect-project.sh # Configure for specific frameworks ai-dev-toolkit configure --framework react ai-dev-toolkit configure --framework nextjs ai-dev-toolkit configure --framework python# Index your project documentation ai-dev-toolkit index --source ./docs ai-dev-toolkit index --source ./README.md ai-dev-toolkit index --include "*.md,*.rst,*.txt"# Customize service ports export RAG_PORT=4001 export MCP_PORT=4002 export FILE_MANAGER_PORT=4003 export CONTROL_PANEL_PORT=4004Once deployed, manage your AI development environment:
# Start all services ./ai-control.sh start # Individual service management ./ai-control.sh rag start ./ai-control.sh mcp start ./ai-control.sh panel start # Web interfaces open http://localhost:4001 # RAG Search open http://localhost:4003 # File Manager open http://localhost:4004 # Control Panel{ "settings": { "ai-dev-toolkit.ragEndpoint": "http://localhost:4001", "ai-dev-toolkit.mcpServer": "http://localhost:4002" } }// Use the MCP server in your AI workflow import { MCPClient } from '@modelcontextprotocol/sdk' const mcp = new MCPClient('stdio', { command: 'node', args: ['./ai-dev-toolkit/mcp-server/index.js'] })# GitHub Actions - name: Setup AI Dev Toolkit run: | curl -sSL https://get.ai-dev-toolkit.com | bash ai-dev-toolkit start --headless - name: AI-Enhanced Testing run: | ai-dev-toolkit query "test patterns for React components" npm test- π Setup Time: < 2 minutes
- πΎ Memory Usage: < 200MB total
- π Search Speed: < 100ms per query
- π Document Capacity: 10,000+ documents
- β‘ Cold Start: < 5 seconds
Each component runs independently and can be deployed separately:
graph TB A[Control Panel :4004] --> B[RAG System :4001] A --> C[MCP Server :4002] A --> D[File Manager :4003] B --> E[SQLite Database] C --> E D --> F[Documentation Store] G[AI Agents] --> C H[Developers] --> A - Documentation β File Manager β RAG Indexer β SQLite Database
- AI Queries β MCP Server β RAG Engine β Semantic Search Results
- Human Queries β Web Interface β RAG API β Search Results
- Management β Control Panel β Service Scripts β System Status
- Personal project knowledge bases
- AI-assisted coding environments
- Documentation-driven development
- Shared knowledge repositories
- Team onboarding acceleration
- Collaborative AI development
- Enterprise AI development platforms
- Standardized development environments
- Knowledge management systems
- Contributor onboarding
- Documentation accessibility
- AI-powered issue resolution
Keep your toolkit current:
# Update to latest version ai-dev-toolkit update # Update specific components ai-dev-toolkit update rag ai-dev-toolkit update mcp # Backup before updates ai-dev-toolkit backup ai-dev-toolkit restore backup-20241109.zip- π Plugin System - Custom integrations
- π Multi-language Support - Python, Java, Go
- π± Mobile Interface - Responsive design
- π Authentication - Multi-user support
- βοΈ Cloud Deployment - Kubernetes manifests
- π€ AI Code Generation - Integrated with RAG knowledge
- π Analytics Dashboard - Usage insights and optimization
- π Real-time Collaboration - Live document sharing
- π¨ Custom Themes - Branding and personalization
Help improve the toolkit:
# Development setup git clone https://github.com/hartou/ai-dev-toolkit-template.git cd ai-dev-toolkit-template ./scripts/dev-setup.sh # Run tests npm test # Submit improvements git checkout -b feature/my-improvement git commit -m "Add awesome feature" git push origin feature/my-improvementMIT License - Use freely in personal and commercial projects.
- π§ Email: support@ai-dev-toolkit.com
- π¬ Discord: AI Dev Toolkit Community
- π Issues: GitHub Issues
- π Docs: Full Documentation
Transform any project into an AI-enhanced development environment in under 2 minutes. π