Skip to content

[LeetCode] 48. Rotate Image #48

Open
@grandyang

Description

@grandyang


请点击下方图片观看讲解视频
Click below image to watch YouTube Video
Video

You are given an n x n 2D matrix representing an image, rotate the image by 90 degrees (clockwise).

You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.

Example 1:

Input: matrix = [[1,2,3],[4,5,6],[7,8,9]] Output: [[7,4,1],[8,5,2],[9,6,3]] 

Example 2:

Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]] Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]] 

Constraints:

  • n == matrix.length == matrix[i].length
  • 1 <= n <= 20
  • -1000 <= matrix[i][j] <= 1000

在计算机图像处理里,旋转图片是很常见的,由于图片的本质是二维数组,所以也就变成了对数组的操作处理,翻转的本质就是某个位置上数移动到另一个位置上,比如用一个简单的例子来分析:

1 2 3       7 4 1  4 5 6  -->   8 5 2   7 8 9       9 6 3 

对于90度的翻转有很多方法,一步或多步都可以解,先来看一种直接的方法,这种方法是按顺时针的顺序去覆盖前面的数字,从四个顶角开始,然后往中间去遍历,每次覆盖的坐标都是同理,如下:

(i, j) <- (n-1-j, i) <- (n-1-i, n-1-j) <- (j, n-1-i)

这其实是个循环的过程,第一个位置又覆盖了第四个位置,这里i的取值范围是 [0, n/2),j的取值范围是 [i, n-1-i),至于为什么i和j是这个取值范围,为啥i不用遍历 [n/2, n),若仔细观察这些位置之间的联系,不难发现,实际上j列的范围 [i, n-1-i) 顺时针翻转 90 度,正好就是i行的 [n/2, n) 的位置,这个方法每次循环换四个数字,如下所示:

1 2 3 7 2 1 7 4 1 4 5 6 --> 4 5 6   -->   8 5 2   7 8 9 9 8 3       9 6 3 

解法一:

class Solution { public: void rotate(vector<vector<int>>& matrix) { int n = matrix.size(); for (int i = 0; i < n / 2; ++i) { for (int j = i; j < n - 1 - i; ++j) { int tmp = matrix[i][j]; matrix[i][j] = matrix[n - 1 - j][i]; matrix[n - 1 - j][i] = matrix[n - 1 - i][n - 1 - j]; matrix[n - 1 - i][n - 1 - j] = matrix[j][n - 1 - i]; matrix[j][n - 1 - i] = tmp; } } } }; 

还有一种解法,首先以次对角线为轴翻转,然后再以x轴中线上下翻转即可得到结果,如下图所示(其中蓝色数字表示翻转轴):

1 2 3       9 6 3      7 4 1 4 5 6  -->   8 5 2   -->   8 5 2   7 8 9       7 4 1      9 6 3 

解法二:

class Solution { public: void rotate(vector<vector<int>>& matrix) { int n = matrix.size(); for (int i = 0; i < n - 1; ++i) { for (int j = 0; j < n - i; ++j) { swap(matrix[i][j], matrix[n - 1- j][n - 1 - i]); } } reverse(matrix.begin(), matrix.end()); } }; 

最后再来看一种方法,这种方法首先对原数组取其转置矩阵,所谓转置矩阵就是以主对角线为轴翻转,然后把每行的数字翻转可得到结果,如下所示(其中蓝色数字表示翻转轴,Github 上可能无法显示颜色,请参见博客园上的帖子):

1 2 3       1 4 7      7 4 1 4 5 6  -->   2 5 8   -->   8 5 2   7 8 9       3 6 9     9 6 3 

解法三:

class Solution { public: void rotate(vector<vector<int>>& matrix) { int n = matrix.size(); for (int i = 0; i < n; ++i) { for (int j = i + 1; j < n; ++j) { swap(matrix[i][j], matrix[j][i]); } reverse(matrix[i].begin(), matrix[i].end()); } } }; 

Github 同步地址:

#48

类似题目:

Determine Whether Matrix Can Be Obtained By Rotation

参考资料:

https://leetcode.com/problems/rotate-image/

https://leetcode.com/problems/rotate-image/discuss/18895/Clear-Java-solution

https://leetcode.com/problems/rotate-image/discuss/18872/A-common-method-to-rotate-the-image

LeetCode All in One 题目讲解汇总(持续更新中...)

(欢迎加入博主的知识星球,博主将及时答疑解惑,并分享刷题经验与总结,快快加入吧~)

知识星球 喜欢请点赞,疼爱请打赏❤️~.~

微信打赏

|

Venmo 打赏


---|---

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions