Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion google/cloud/aiplatform/training_jobs.py
Original file line number Diff line number Diff line change
Expand Up @@ -4736,7 +4736,7 @@ def run(
model_labels: Optional[Dict[str, str]] = None,
disable_early_stopping: bool = False,
sync: bool = True,
create_request_timeout: Optional[float] = False,
create_request_timeout: Optional[float] = None,
) -> models.Model:
"""Runs the AutoML Image training job and returns a model.

Expand Down
154 changes: 154 additions & 0 deletions tests/unit/aiplatform/test_training_jobs.py
Original file line number Diff line number Diff line change
Expand Up @@ -4737,6 +4737,160 @@ def test_run_call_pipeline_service_create_with_tabular_dataset_with_timeout(
timeout=180.0,
)

@pytest.mark.parametrize("sync", [True, False])
def test_run_call_pipeline_service_create_with_tabular_dataset_with_timeout_not_explicitly_set(
self,
mock_pipeline_service_create,
mock_pipeline_service_get,
mock_tabular_dataset,
mock_model_service_get,
sync,
):
aiplatform.init(
project=_TEST_PROJECT,
staging_bucket=_TEST_BUCKET_NAME,
encryption_spec_key_name=_TEST_DEFAULT_ENCRYPTION_KEY_NAME,
)

job = training_jobs.CustomPythonPackageTrainingJob(
display_name=_TEST_DISPLAY_NAME,
labels=_TEST_LABELS,
python_package_gcs_uri=_TEST_OUTPUT_PYTHON_PACKAGE_PATH,
python_module_name=_TEST_PYTHON_MODULE_NAME,
container_uri=_TEST_TRAINING_CONTAINER_IMAGE,
model_serving_container_image_uri=_TEST_SERVING_CONTAINER_IMAGE,
model_serving_container_predict_route=_TEST_SERVING_CONTAINER_PREDICTION_ROUTE,
model_serving_container_health_route=_TEST_SERVING_CONTAINER_HEALTH_ROUTE,
model_serving_container_command=_TEST_MODEL_SERVING_CONTAINER_COMMAND,
model_serving_container_args=_TEST_MODEL_SERVING_CONTAINER_ARGS,
model_serving_container_environment_variables=_TEST_MODEL_SERVING_CONTAINER_ENVIRONMENT_VARIABLES,
model_serving_container_ports=_TEST_MODEL_SERVING_CONTAINER_PORTS,
model_description=_TEST_MODEL_DESCRIPTION,
model_instance_schema_uri=_TEST_MODEL_INSTANCE_SCHEMA_URI,
model_parameters_schema_uri=_TEST_MODEL_PARAMETERS_SCHEMA_URI,
model_prediction_schema_uri=_TEST_MODEL_PREDICTION_SCHEMA_URI,
)

model_from_job = job.run(
dataset=mock_tabular_dataset,
model_display_name=_TEST_MODEL_DISPLAY_NAME,
model_labels=_TEST_MODEL_LABELS,
base_output_dir=_TEST_BASE_OUTPUT_DIR,
service_account=_TEST_SERVICE_ACCOUNT,
network=_TEST_NETWORK,
args=_TEST_RUN_ARGS,
environment_variables=_TEST_ENVIRONMENT_VARIABLES,
machine_type=_TEST_MACHINE_TYPE,
accelerator_type=_TEST_ACCELERATOR_TYPE,
accelerator_count=_TEST_ACCELERATOR_COUNT,
training_fraction_split=_TEST_TRAINING_FRACTION_SPLIT,
validation_fraction_split=_TEST_VALIDATION_FRACTION_SPLIT,
test_fraction_split=_TEST_TEST_FRACTION_SPLIT,
sync=sync,
)

if not sync:
model_from_job.wait()

true_args = _TEST_RUN_ARGS
true_env = [
{"name": key, "value": value}
for key, value in _TEST_ENVIRONMENT_VARIABLES.items()
]

true_worker_pool_spec = {
"replica_count": _TEST_REPLICA_COUNT,
"machine_spec": {
"machine_type": _TEST_MACHINE_TYPE,
"accelerator_type": _TEST_ACCELERATOR_TYPE,
"accelerator_count": _TEST_ACCELERATOR_COUNT,
},
"disk_spec": {
"boot_disk_type": _TEST_BOOT_DISK_TYPE_DEFAULT,
"boot_disk_size_gb": _TEST_BOOT_DISK_SIZE_GB_DEFAULT,
},
"python_package_spec": {
"executor_image_uri": _TEST_TRAINING_CONTAINER_IMAGE,
"python_module": _TEST_PYTHON_MODULE_NAME,
"package_uris": [_TEST_OUTPUT_PYTHON_PACKAGE_PATH],
"args": true_args,
"env": true_env,
},
}

true_fraction_split = gca_training_pipeline.FractionSplit(
training_fraction=_TEST_TRAINING_FRACTION_SPLIT,
validation_fraction=_TEST_VALIDATION_FRACTION_SPLIT,
test_fraction=_TEST_TEST_FRACTION_SPLIT,
)

env = [
gca_env_var.EnvVar(name=str(key), value=str(value))
for key, value in _TEST_MODEL_SERVING_CONTAINER_ENVIRONMENT_VARIABLES.items()
]

ports = [
gca_model.Port(container_port=port)
for port in _TEST_MODEL_SERVING_CONTAINER_PORTS
]

true_container_spec = gca_model.ModelContainerSpec(
image_uri=_TEST_SERVING_CONTAINER_IMAGE,
predict_route=_TEST_SERVING_CONTAINER_PREDICTION_ROUTE,
health_route=_TEST_SERVING_CONTAINER_HEALTH_ROUTE,
command=_TEST_MODEL_SERVING_CONTAINER_COMMAND,
args=_TEST_MODEL_SERVING_CONTAINER_ARGS,
env=env,
ports=ports,
)

true_managed_model = gca_model.Model(
display_name=_TEST_MODEL_DISPLAY_NAME,
labels=_TEST_MODEL_LABELS,
description=_TEST_MODEL_DESCRIPTION,
container_spec=true_container_spec,
predict_schemata=gca_model.PredictSchemata(
instance_schema_uri=_TEST_MODEL_INSTANCE_SCHEMA_URI,
parameters_schema_uri=_TEST_MODEL_PARAMETERS_SCHEMA_URI,
prediction_schema_uri=_TEST_MODEL_PREDICTION_SCHEMA_URI,
),
encryption_spec=_TEST_DEFAULT_ENCRYPTION_SPEC,
)

true_input_data_config = gca_training_pipeline.InputDataConfig(
fraction_split=true_fraction_split,
dataset_id=mock_tabular_dataset.name,
gcs_destination=gca_io.GcsDestination(
output_uri_prefix=_TEST_BASE_OUTPUT_DIR
),
)

true_training_pipeline = gca_training_pipeline.TrainingPipeline(
display_name=_TEST_DISPLAY_NAME,
labels=_TEST_LABELS,
training_task_definition=schema.training_job.definition.custom_task,
training_task_inputs=json_format.ParseDict(
{
"worker_pool_specs": [true_worker_pool_spec],
"base_output_directory": {
"output_uri_prefix": _TEST_BASE_OUTPUT_DIR
},
"service_account": _TEST_SERVICE_ACCOUNT,
"network": _TEST_NETWORK,
},
struct_pb2.Value(),
),
model_to_upload=true_managed_model,
input_data_config=true_input_data_config,
encryption_spec=_TEST_DEFAULT_ENCRYPTION_SPEC,
)

mock_pipeline_service_create.assert_called_once_with(
parent=initializer.global_config.common_location_path(),
training_pipeline=true_training_pipeline,
timeout=None,
)

@pytest.mark.parametrize("sync", [True, False])
def test_run_call_pipeline_service_create_with_tabular_dataset_without_model_display_name_nor_model_labels(
self,
Expand Down