@@ -145,33 +145,35 @@ \subsection{Finite-dimensional spaces}\label{notations: vector spaces: finite-di
145145%
146146\subsubsection {The product topology of $ \C ^n$ }\label {notations: vector spaces: finite-dimensional vector spaces: the product topology of Cn }
147147%
148- As the $ n$ -th power of $ \C $ , $ \C ^n$ is topologized by the polydiscs % %
148+ As the $ n$ -th power of $ \C $ , $ \C ^n$ has a standard base $ \set {e_k}{k = 1, \dots , n}$ %
149+ (where $ e_k = 1 _{\singleton {k}})$ . %
150+ Furthermore, it is topologized by the {\it polydiscs} % %
149151\begin {align }
150- \prod _{i=1}^{n} D( r_i) \quad (D( r_i) \Def \set {z_i \in C}{\magnitude {z_i} < r_i}), %
152+ \prod _{i=1}^{n} D_{ r_i} \quad (D_{ r_i} \Def \set {z_i \in C}{\magnitude {z_i} < r_i}), %
151153\end {align }
152154% as $r_i$ ranges over the real line. %%$]0, \infty[$. %
153155Equivalently, we may equipp $ \C ^n$ with the euclidian norm % %
154156\begin {align }
155157 \norma {2}{z} \Def \sqrt {\magnitude {z_1}^2 + \cdots + \magnitude {z_n}^2} \quad \left (z = (z_1, \dots , z_n) \in \C ^n\right ),
156158\end {align }
157159%
158- whose open balls centered at the origin are all %
160+ whose open balls centered at the origin are all nonempty %
159161\begin {align }
160- B(r) \Def \set {z\in \C ^n}{\norma {2}{z} < r} \quad (r > 0) .
162+ B_r \Def \set {z\in \C ^n}{\norma {2}{z} < r}.
161163\end {align }
162164To see such equivalence, first pick a positive $ r$ then set $ r_i = r/\sqrt {n}$ , so that %
163165\begin {align }
164- \prod _{i=1}^{n} D( r_i) \subseteq B(r) .
166+ \prod _{i=1}^{n} D_{ r_i} \subseteq B_r .
165167\end {align }
166168%
167169Next, conversely choosing $ r = \min \{ r_1 , \dots , r_n\} $ yields %
168170\begin {align }
169- B(r) \subseteq \prod _{i=1}^{n} D( r_i) .
171+ B_r \subseteq \prod _{i=1}^{n} D_{ r_i} .
170172\end {align }
171173%
172174\subsubsection {Topology of a finite-dimensional vector space }
173175It is customary to identify any $ n$ -dimensional vector space %
174- with $ \C ^n$ endowed with the product topology ; %
176+ with $ \C ^n$ topologized by the euclidian norm ; %
175177see [\ref {notations: vector spaces: finite-dimensional vector spaces: the product topology of Cn }]. %
176178%
177179To see this, pick a $ n$ -dimensional vector space $ Y$ , of basis $ \{ u_1 , \dots , u_n\} $ ; %
@@ -182,39 +184,52 @@ \subsubsection{Topology of a finite-dimensional vector space}
182184%
183185Actually, $ Y$ is endowed with the topology $ \set {f(U)}{U \text { open}}$ , %
184186%
185- and [1.21] of \cite {FA } shows that it is the only vector space topology for $ Y $ . %
187+ and [1.21] of \cite {FA } states that $ f $ is an homeomorphism, which implies that %
186188%
187- As a consequence, this establishes that $ Y$ is necessarily locally convex and bounded; \ie normable; %
189+ \begin {quote }
190+ $ \set {f(U)}{U \text { open}}$ {\it is the only vector space topology for $ Y$ }. %
191+ \end {quote }
192+ %
193+ As a consequence, $ Y$ is necessarily locally convex and bounded; \ie normable; %
188194see [1.39] of \cite {FA }. %
189- Moreover, provided a norm $ \norma {Y}{ \, \cdot \, }$ over $ Y$ , there exists a positive {\it modulus of continuity} $ C=C_f$ such that %
195+ Moreover, provided a norm $ \norm { \, \cdot \, }$ on $ Y$ , there exists a positive {\it modulus of continuity} $ C=C_f$ such that %
190196%
191197\begin {align }\label {norm equivalence 1 }
192- \norma {Y} {y} \leq C \norma {2}{z} \quad \left ((z, y) \in f\right ),
198+ \norm {y} \leq C \norma {2}{z} \quad \left ((z, y) \in f\right ),
193199\end {align }
194200%
195201since $ f$ is continuous. %
196202%
197203Now pick a $ n$ -dimensional topological vector space $ W$ then repeat the same reasoning, %
198- first with some $ g: \C ^n \to W$ , %
199- next with $ h = g\circ f^{\, \minus 1}$ , in the role of $ f$ : %
204+ first with $ g: \C ^n \to W$ , %
205+ next with $ h = g\circ f^{\, \minus 1}$ , in the role of $ f$ , and so conclude that %
206+ the homeomorphism $ h$ maps $ Y$ 's topology onto $ Y$ 's topology %
207+ and that $ W$ is normable. %
208+ To sum it up, %
209+ %
210+ \begin {quote }
211+ $ \dim (Y) = \dim (W)$ , \ie %
212+ $ Y$ {\it and } $ W$ {\it are isomorphic each other, }
213+ {\it means that }$ Y$ {\it \, and }$ W$ {\it \, are two normable spaces that are homeomorphic each other.}
214+ \end {quote }
200215%
201- We then equip $ W$ with a norm $ \norma {W}{ \ ,\cdot \, } $ , %
216+ We then equip $ W$ with a norm $ \lvert\lvert\lvert \ ,\cdot \, \rvert\rvert\rvert $ , %
202217so that %
203218%
204219\begin {align }
205- \norma {W}{w} \ leq C_h \norma {Y} {y} \quad \left ((y, w) \in h \right )
220+ \lvert\lvert\lvert w \rvert\rvert\rvert \ leq C_h \norm {y} \quad \left ((y, w) \in h \right )
206221\end {align }
207222%
208223for some positive $ C_h$ . %
209224%
210225The special case $ g=f$ means that $ Y$ 's norms are equivalent, %
211226in the sense that there exists a positive $ C_{\id {}}$ such that %
212227\begin {align }
213- \norma { \text {id}(Y)}{y} \ leq C_{\id {}} \norma {Y}{y},
228+ \lvert\lvert\lvert y \rvert\rvert\rvert \ leq C_{\id {}} \norm {y}. %
214229\end {align }
215230%
216231\subsubsection {The standard norms $ \norma {1}{\, \cdot \, }$ , $ \norma {2}{\, \cdot \, }$ , $ \norma {\infty }{\, \cdot \, }$ }
217- In all pecial cases $ Y=\C ^n$ topologized by the standard norms $ 1 $ , $ 2 $ , $ \infty $ ,
232+ In all special cases $ Y=\C ^n$ topologized by the standard norms $ 1 $ , $ 2 $ , $ \infty $ ,
218233the optimal modulus, \ie the smallest $ C = C_{i, j}$ such that %
219234\begin {align }
220235\norma {j}{z} \leq C_{i, j} \norma {i}{z} \quad \left (z \in \C ^n \right )),
0 commit comments