Skip to content

Commit eb168bd

Browse files
committed
UPDATE: Finished subsection about finite-dimensional spaces, updated 1.10 accordinly.
1 parent 9cd5fef commit eb168bd

File tree

2 files changed

+36
-26
lines changed

2 files changed

+36
-26
lines changed

chapter_1/1_10.tex

Lines changed: 4 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -60,7 +60,7 @@
6060
\end{align}
6161
%
6262
for if $|y_e| < 1/s$; which proves (a) whether %
63-
$B$ is the standard basis of $Y = \C^n$ equipped with $\norma{1}{\,\cdot\,}$. %
63+
$B$ is the standard basis of $Y = \C^n$ equipped with $\norma{\infty}{\,\cdot\,}$. %
6464
%
6565
The general case is now provided for free by [\ref{notations: vector spaces: finite-dimensional vector spaces}].\\\\
6666
%
@@ -75,14 +75,9 @@
7575
%
7676
playing the role of $N$. Since $\Lambda$ is onto, the first isomorphism %
7777
theorem (see Exercise 1.9) asserts that $f$ is an isomorphism of $X/N$ %
78-
onto $Y$. Consequently,
79-
%
80-
\begin{align}
81-
\dim X/N= n.
82-
\end{align}
83-
%
84-
$f$ is then an homeomorphism of $X/N$ onto $Y$; %
85-
see \hyperref[finite dimensional spaces]{[finite dimensional spaces]}.
78+
onto $Y$. %
79+
We now conclude with the help of [\ref{notations: vector spaces: finite-dimensional vector spaces}] %
80+
that $f$ is an homeomorphism of $X/N$ onto $Y$. %
8681
We have thus established that $f$ is continuous: So is $\Lambda = f\circ \pi$.
8782
\end{proof}
8883
% END

notations.tex

Lines changed: 32 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -145,33 +145,35 @@ \subsection{Finite-dimensional spaces}\label{notations: vector spaces: finite-di
145145
%
146146
\subsubsection{The product topology of $\C^n$}\label{notations: vector spaces: finite-dimensional vector spaces: the product topology of Cn}
147147
%
148-
As the $n$-th power of $\C$, $\C^n$ is topologized by the polydiscs %%
148+
As the $n$-th power of $\C$, $\C^n$ has a standard base $\set{e_k}{k = 1, \dots, n}$ %
149+
(where $e_k = 1_{\singleton{k}})$. %
150+
Furthermore, it is topologized by the {\it polydiscs} %%
149151
\begin{align}
150-
\prod_{i=1}^{n} D(r_i) \quad (D(r_i) \Def \set{z_i \in C}{\magnitude{z_i} < r_i}), %
152+
\prod_{i=1}^{n} D_{r_i} \quad (D_{r_i} \Def \set{z_i \in C}{\magnitude{z_i} < r_i}), %
151153
\end{align}
152154
%as $r_i$ ranges over the real line. %%$]0, \infty[$. %
153155
Equivalently, we may equipp $\C^n$ with the euclidian norm % %
154156
\begin{align}
155157
\norma{2}{z} \Def \sqrt{\magnitude{z_1}^2 + \cdots + \magnitude{z_n}^2} \quad \left(z = (z_1, \dots, z_n) \in \C^n\right),
156158
\end{align}
157159
%
158-
whose open balls centered at the origin are all %
160+
whose open balls centered at the origin are all nonempty%
159161
\begin{align}
160-
B(r) \Def \set{z\in \C^n}{\norma{2}{z} < r} \quad (r > 0).
162+
B_r \Def \set{z\in \C^n}{\norma{2}{z} < r}.
161163
\end{align}
162164
To see such equivalence, first pick a positive $r$ then set $r_i = r/\sqrt{n}$, so that %
163165
\begin{align}
164-
\prod_{i=1}^{n} D(r_i) \subseteq B(r).
166+
\prod_{i=1}^{n} D_{r_i} \subseteq B_r.
165167
\end{align}
166168
%
167169
Next, conversely choosing $r = \min\{r_1, \dots, r_n\}$ yields %
168170
\begin{align}
169-
B(r) \subseteq \prod_{i=1}^{n} D(r_i) .
171+
B_r \subseteq \prod_{i=1}^{n} D_{r_i} .
170172
\end{align}
171173
%
172174
\subsubsection{Topology of a finite-dimensional vector space}
173175
It is customary to identify any $n$-dimensional vector space %
174-
with $\C^n$ endowed with the product topology; %
176+
with $\C^n$ topologized by the euclidian norm; %
175177
see [\ref{notations: vector spaces: finite-dimensional vector spaces: the product topology of Cn}]. %
176178
%
177179
To see this, pick a $n$-dimensional vector space $Y$, of basis $\{u_1, \dots, u_n\}$; %
@@ -182,39 +184,52 @@ \subsubsection{Topology of a finite-dimensional vector space}
182184
%
183185
Actually, $Y$ is endowed with the topology $\set{f(U)}{U \text{ open}}$, %
184186
%
185-
and [1.21] of \cite{FA} shows that it is the only vector space topology for $Y$. %
187+
and [1.21] of \cite{FA} states that $f$ is an homeomorphism, which implies that %
186188
%
187-
As a consequence, this establishes that $Y$ is necessarily locally convex and bounded; \ie normable; %
189+
\begin{quote}
190+
$\set{f(U)}{U \text{ open}}$ {\it is the only vector space topology for $Y$}. %
191+
\end{quote}
192+
%
193+
As a consequence, $Y$ is necessarily locally convex and bounded; \ie normable; %
188194
see [1.39] of \cite{FA}. %
189-
Moreover, provided a norm $\norma{Y}{\,\cdot\,}$ over $Y$, there exists a positive {\it modulus of continuity} $C=C_f$ such that %
195+
Moreover, provided a norm $\norm{\,\cdot\,}$ on $Y$, there exists a positive {\it modulus of continuity} $C=C_f$ such that %
190196
%
191197
\begin{align}\label{norm equivalence 1}
192-
\norma{Y}{y} \leq C \norma{2}{z} \quad \left((z, y) \in f\right),
198+
\norm{y} \leq C \norma{2}{z} \quad \left((z, y) \in f\right),
193199
\end{align}
194200
%
195201
since $f$ is continuous. %
196202
%
197203
Now pick a $n$-dimensional topological vector space $W$ then repeat the same reasoning, %
198-
first with some $g: \C^n \to W$, %
199-
next with $h = g\circ f^{\,\minus 1}$, in the role of $f$: %
204+
first with $g: \C^n \to W$, %
205+
next with $h = g\circ f^{\,\minus 1}$, in the role of $f$, and so conclude that %
206+
the homeomorphism $h$ maps $Y$'s topology onto $Y$'s topology %
207+
and that $W$ is normable. %
208+
To sum it up, %
209+
%
210+
\begin{quote}
211+
$\dim(Y) = \dim(W)$, \ie %
212+
$Y$ {\it and } $W$ {\it are isomorphic each other, }
213+
{\it means that }$Y${\it \,and }$W${\it \,are two normable spaces that are homeomorphic each other.}
214+
\end{quote}
200215
%
201-
We then equip $W$ with a norm $\norma{W}{\,\cdot\,}$, %
216+
We then equip $W$ with a norm $\lvert\lvert\lvert\,\cdot\,\rvert\rvert\rvert$, %
202217
so that %
203218
%
204219
\begin{align}
205-
\norma{W}{w} \leq C_h \norma{Y}{y} \quad \left((y, w) \in h \right)
220+
\lvert\lvert\lvert w \rvert\rvert\rvert \leq C_h \norm{y} \quad \left((y, w) \in h \right)
206221
\end{align}
207222
%
208223
for some positive $C_h$. %
209224
%
210225
The special case $g=f$ means that $Y$'s norms are equivalent, %
211226
in the sense that there exists a positive $C_{\id{}}$ such that %
212227
\begin{align}
213-
\norma{\text{id}(Y)}{y} \leq C_{\id{}} \norma{Y}{y},
228+
\lvert\lvert\lvert y \rvert\rvert\rvert \leq C_{\id{}} \norm{y}. %
214229
\end{align}
215230
%
216231
\subsubsection{The standard norms $\norma{1}{\,\cdot\,}$, $\norma{2}{\,\cdot\,}$, $\norma{\infty}{\,\cdot\,}$}
217-
In all pecial cases $Y=\C^n$ topologized by the standard norms $1$, $2$, $\infty$,
232+
In all special cases $Y=\C^n$ topologized by the standard norms $1$, $2$, $\infty$,
218233
the optimal modulus, \ie the smallest $C = C_{i, j}$ such that %
219234
\begin{align}
220235
\norma{j}{z} \leq C_{i, j} \norma{i}{z} \quad \left(z \in \C^n \right)),

0 commit comments

Comments
 (0)