Skip to content

Commit 9cd5fef

Browse files
committed
UPDATE: notations.tex, added a section about TVS.
1 parent f354727 commit 9cd5fef

26 files changed

+305
-234
lines changed

FA_DM.pdf

20 KB
Binary file not shown.

FA_DM.tex

Lines changed: 9 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -130,11 +130,15 @@
130130
\newcommand{\function}[1]{\mathtt{#1}}
131131
\newcommand{\relation}[2]{{#1}_{#2}}
132132
\newcommand{\f}[2]{#1(#2)}
133-
133+
\newcommand{\id}[1]{\text{id}_{#1}}
134+
%\newcommand{\DeclareMathOperator}[1]{\text{#1}}
134135

135136
% Sets
136137
%\renewcommand{\notin}{\tiny{\not\in}}
137138
%\renewcommand{\ni}{\small \ni}
139+
\DeclareMathOperator\opcard{card}
140+
\newcommand{\card}[1]{\opcard(#1)}
141+
%
138142
\def\contains{\supseteq }
139143
\def\cuts{\cap}
140144
\DeclareMathOperator\cvxhull{co}
@@ -148,8 +152,10 @@
148152
% Arithmetics
149153
\newcommand{\ceil}[1]{\lceil #1 \rceilf}
150154
% Analysis
151-
\newcommand\magnitude[1]{\left\lvert\, #1 \,\right\rvert}
152-
\renewcommand{\norm}[2]{\| \,#2 \, \|_{#1}}
155+
%\newcommand\magnitude[1]{\left\lvert\, #1 \,\right\rvert}
156+
\newcommand\magnitude[1]{\abs{#1}}
157+
\newcommand{\norma}[2]{\norm{#2}_{#1}}
158+
%\renewcommand{\norm}[2]{\norm{#2}_{#1}}
153159
\def\weakstar{\text{weak}^\ast\text{-}}
154160
% Topology
155161
\newcommand{\localbase}[1]{\mathscr #1}

chapter_1/1_10.tex

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -18,8 +18,8 @@
1818
\begin{proof}
1919
Discard the trivial case $\Lambda = 0$ and assume that $\dim Y = n$ %
2020
for some positive $n$. %
21-
Let $e$ range over a basis of $B$ of $Y$ then pick in $X$ $W$ an arbitrary %
22-
neighborhood of the origin: There so exists $V$ a balanced neighborhood of %
21+
Let $e$ range over a basis of $B$ of $Y$ then pick in $X$ an arbitrary %
22+
neighborhood $W$ of the origin: There so exists $V$ a balanced neighborhood of %
2323
the origin of $X$ such that
2424
%
2525
\begin{align}
@@ -59,8 +59,10 @@
5959
y \in \sum_e \Lambda (V) \subseteq \Lambda(W)
6060
\end{align}
6161
%
62-
for if $|y_e| < 1/s$; which proves (a); %
63-
see \hyperref[finite dimensional spaces]{[finite dimensional spaces]}.\\\\
62+
for if $|y_e| < 1/s$; which proves (a) whether %
63+
$B$ is the standard basis of $Y = \C^n$ equipped with $\norma{1}{\,\cdot\,}$. %
64+
%
65+
The general case is now provided for free by [\ref{notations: vector spaces: finite-dimensional vector spaces}].\\\\
6466
%
6567
%
6668
To prove (b), assume that the null space

chapter_1/1_4_comments.txt

Lines changed: 35 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,35 @@
1+
The following permutation
2+
\begin{align}
3+
\sigma:&\, \C^2 \to \C^2\\
4+
& (z,z')\mapsto (z',z)
5+
\end{align}
6+
is an automorphism, \ie an homeomorphism [\cf (a) of 1.21], of the vector space $\C^2$. The key ingredient is that $\sigma$ is open. Moreover, the invariant points under $\sigma$ form the diagonal
7+
\eq{D\Def \{(z,z)\in\C^2 \}\quad. }\endeq
8+
As the graph of
9+
\begin{align*}
10+
I:& \, \C \to \C\nonumber\quad , \\
11+
&\, \, z\mapsto z \nonumber
12+
\end{align*}
13+
$D$ is a (closed) proper subspace of $\C^2$. Thus,
14+
\eq{D°=\emptyset\quad . }\endeq
15+
Remark that
16+
\eq{\label{1_4_1}
17+
S\Def \{(z_{1},z_{2})_n :\, n=1,2,3,\dots \}\subseteq B \donc\, \limsup_{n\infty}\, \lvert z_{1,n} \rvert \< \liminf_{n\infty}\, \lvert z_{2,n}\rvert \quad . }\endeq
18+
For if $S$ converges (\ref{1_4_1}) forces $S$ to do so in $B$, which is then closed.
19+
\eq{\label{eq_1_4_2}
20+
\C^2 \setminus B= \{(z_{1},z_{2})\in \C^2:\, \lvert z_{1}\rvert > \lvert z_{2}\rvert \}
21+
}\endeq
22+
is therefore open. So is
23+
\eq{E\Def \sigma(\C^2 \setminus B)= \{(z_{1},z_{2})\in \C^2:\, \lvert z_{1}\rvert < \lvert z_{2}\rvert \}\quad , }\endeq
24+
since $\sigma$ is open.
25+
\eq{B=E \uplus D \quad . }\endeq
26+
Let $(z_1,z_2$ be in $B°$ If such a point would lie in $D$, there would be $V$ a neighbourhood of $(0,0)$ such that
27+
\eq{(z_1,z_2) + V \subseteq B \quad ,}\endeq
28+
$(z_1,z_2) + V )\cap E$ is open. So is $(z_1,z_2) + V )\cap D$. contradicting
29+
\eq{B°\subseteq B\setminus \Delta \C = B_<}\endeq
30+
Let $(z_1,z_2)$ be any element of $B°$. Since $(\Delta\C)°=\emptyset$, $(z_1,z_2)$ is in $B_<$.
31+
\eq{([z] \in \C^\ast / N \cong \R_+ }\endeq
32+
Since $\C^2$ is separated, there exists a neighbourhood of the origin such that
33+
\eq{C(z_1)+V\cup C(z_2)+ V\quad, }\endeq
34+
so that
35+
\eq{z_1 + V \cup z_2 + V}\endeq

chapter_1/1_8.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
%!TEX root = /Volumes/HD_2/Rudin/Rudin_DM.tex
1+
%

chapter_2/2_12.tex

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
Let X be the normed space of all real polynomials in one variable, with %
33
%
44
\begin{align*}
5-
\norm{}{f}=\int_0^1\lvert f(t)\rvert\ dt.
5+
\norm{f}=\int_0^1\lvert f(t)\rvert\ dt.
66
\end{align*}
77
%
88
Put %
@@ -16,7 +16,7 @@
1616
%
1717
\begin{align}\label{magnitude of B(f, g)}
1818
\magnitude{B(f, g)}
19-
& < \norm{}{f} \cdot \max_{[0,1]} \magnitude{g} ;
19+
& < \norm{f} \cdot \max_{[0,1]} \magnitude{g} ;
2020
\end{align}
2121
%
2222
which is sufficient (\citeresultFA{1.18}) to assert that any %
@@ -32,7 +32,7 @@
3232
There so exists a positive $M$ such that,
3333
%
3434
\begin{align}\label{magnitude of B(f, g) H_c}
35-
\magnitude{B(f, g)} < M \norm{}{f}\norm{}{g}.
35+
\magnitude{B(f, g)} < M \norm{f}\norm{g}.
3636
\end{align}
3737
%
3838
Put %
@@ -44,7 +44,7 @@
4444
so that
4545
%
4646
\begin{align}\label{norm of f_n}
47-
\norm{}{f_n} = \frac{2 \sqrt{n}}{n+1} \tendsto{n}{\infty}0.
47+
\norm{f_n} = \frac{2 \sqrt{n}}{n+1} \tendsto{n}{\infty}0.
4848
\end{align}
4949
%
5050
On the other hand,
@@ -61,7 +61,7 @@
6161
%
6262
and so obtain
6363
\begin{align}
64-
1 < B(f_n, f_n) < M \norm{}{f_n}^2 \tendsto{n}{\infty} 0.
64+
1 < B(f_n, f_n) < M \norm{f_n}^2 \tendsto{n}{\infty} 0.
6565
\end{align}
6666
Our continuousness assumption is then contradicted. So ends the proof.
6767
\end{proof}

chapter_2/2_15.tex

Lines changed: 51 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -18,37 +18,66 @@
1818
\end{enumerate}
1919
%
2020
By (i), the complement $V_n$ of $\overline{E}_n$ is a dense open set. %
21-
Since $X$ is an F-space, it follows from the Baire's theorem that %
21+
Now pick $x$ in $X$: $x + V_n$ is dense open as well,
22+
since the translation by $x$ is an homeomorphism of $X$. %
2223
%
23-
the intersection $S$ of the $V_n$'s is dense in $X$: %
24+
Note that the density is also a special case of \citeresultFA{1.3 (b)}, as follows, %
2425
%
25-
So is $x+S$ ($x\in X$). To see that, remark that %
26+
\begin{align}\label{2_15_2}
27+
X = x + X \subseteq \overline{x + V_n}.
28+
\end{align}
2629
%
27-
\begin{align}\label{2_15_2}
28-
X = x + \overline{S} \subseteq \overline{x + S}
29-
\end{align}
30+
We now apply the Baire's theorem twice to establish that %
3031
%
31-
follows from \citeresultFA{1.3 (b)}. %
32-
Since $S$ and $x+S$ are both dense open subsets of $X$, %
33-
the Baire's theorem asserts that %
32+
\begin{enumerate}
33+
\item every intersection $W_n = V_n \cap (x+V_n)$ is dense in $X$;
34+
\item so is the intersection $\displaystyle{\bigcap_{n=1}^\infty W_n}$.
35+
\end{enumerate}
3436
%
35-
\begin{align}
36-
\overline{(x+S)\cap S} = X.
37-
\end{align}
37+
Bear in mind that every dense subset of $X$ is nonempty and remark that %
38+
\begin{align}\label{2_15_3}
39+
\bigcap_{n=1}^\infty W_n \subseteq \bigcap_{n=1}^\infty V_n \subseteq Y
40+
\end{align}
41+
holds, since %
3842
%
39-
Thus,
43+
$X\setminus Y \subseteq \bigcup_{n=1}^\infty \overline{E}_n$. %
4044
%
41-
\begin{align}\label{2_15_4}
42-
(x+S)\cap S\neq\emptyset.
43-
\end{align}
45+
Now pick $w$ in $\bigcap_{n=1}^\infty W_n$, so that %
46+
$w$ is an element of $Y$ (by (\ref{2_15_3})) that lies in every $W_n$. %
47+
The key ingredient is that $W_n$ a subset of $x + V_n$. %
48+
Hence %
4449
%
45-
Moreover, it follows from (ii) that %
50+
\begin{align}
51+
w \in x + V_n.
52+
\end{align}
4653
%
47-
$X\setminus Y \subseteq \bigcup_n \closure{E}_n$, \ie
48-
$Y \contains S$. %
49-
Combined with (\ref{2_15_4}), this shows that $x+Y$ cuts $Y$.
50-
Therefore, our arbitrary $x$ is an element of the subgroup $Y$. %
51-
We have thus established that $X \subseteq Y$, which achieves the proof.
54+
Finally,
55+
\begin{align}
56+
w - x \in \bigcap_{n=1}^\infty V_n \subseteq Y;
57+
\end{align}
58+
%
59+
again with (\ref{2_15_3}).
60+
It is now clear that $x + Y$ cuts $Y$ in $x + (w - x ) = w$, which establishes that $x$ lies is $Y - Y$. %
61+
As a conclusion,
62+
\begin{align}
63+
X \subseteq Y,
64+
\end{align}
65+
%
66+
since $x$ was arbitrary and that $Y$ is a subgroup. %
67+
So ends the proof.
68+
%
69+
%
70+
% \begin{align}\label{2_15_4}
71+
% (x+S)\cap S\neq\emptyset.
72+
% \end{align}
73+
%
74+
%Moreover, it follows from (ii) that %
75+
%
76+
% $X\setminus Y \subseteq \bigcup_n \closure{E}_n$, \ie
77+
% $Y \contains S$. %
78+
%Combined with (\ref{2_15_4}), this shows that $x+Y$ cuts $Y$.
79+
%Therefore, our arbitrary $x$ is an element of the subgroup $Y$. %
80+
%We have thus established that $X \subseteq Y$, which achieves the proof.
5281
\end{proof}
5382
\renewcommand{\labelenumi}{(\alph{enumi})}
5483
%

chapter_2/2_3/2_3.tex

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
%!TEX root = /Volumes/HD_2/Rudin/Rudin_DM.tex
1+
%
22
\textit{
33
Put $K=[-1,1]$; define $\D_{K}$ as in section 1.46
44
(with $\R$ in place of $\R^{n}$).
@@ -16,7 +16,7 @@
1616
\int_{\minus 1}^1 f_n (t)\phi (t) dt\
1717
\right\rvert
1818
\leq
19-
M \norm{\infty}{D^{p}}
19+
M \norma{\infty}{D^{p}}
2020
\nonumber
2121
\end{align}
2222
for all $n$.

chapter_2/2_3/2_3_0_lemma.tex

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -4,9 +4,9 @@
44
%
55
%
66
\begin{align}\label{2.3. Mean value inequality.}
7-
\norm{\infty}{D^\alpha \phi}
7+
\norma{\infty}{D^\alpha \phi}
88
\leq
9-
\norm{\infty}{D^p \phi} \left(\frac{\lambda}{2}\right)^{p-\alpha}
9+
\norma{\infty}{D^p \phi} \left(\frac{\lambda}{2}\right)^{p-\alpha}
1010
\quad (\alpha = 0, 1, \dots, p)
1111
\end{align}
1212
%
@@ -59,7 +59,7 @@
5959
\begin{align}\label{2.3. Mean Value (1).}
6060
\lvert D^\alpha \phi(x) \rvert
6161
\leq
62-
\norm{\infty}{D^p \phi}
62+
\norma{\infty}{D^p \phi}
6363
\left(\frac{\lambda}{2}\right)^{p-\alpha}
6464
\quad (x \in [a, c])
6565
\end{align}
@@ -74,7 +74,7 @@
7474
\begin{align}\label{2.3. Mean Value (2).}
7575
\lvert D^\alpha \phi(x) \rvert
7676
\leq
77-
\norm{\infty}{D^p \phi}
77+
\norma{\infty}{D^p \phi}
7878
\left(\frac{\lambda}{2}\right)^{p-\alpha}
7979
% \quad (x \in [c, b]).
8080
\end{align}
@@ -87,9 +87,9 @@
8787
and so obtain %
8888
%
8989
\begin{align}
90-
\norm{\infty}{D^\alpha \phi}
90+
\norma{\infty}{D^\alpha \phi}
9191
\leq
92-
\norm{\infty}{D^p \phi}
92+
\norma{\infty}{D^p \phi}
9393
\left(\frac{\lambda}{2}\right)^{p-\alpha}.
9494
\end{align}
9595
%

chapter_2/2_3/2_3_1_radon_measures.tex

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -19,8 +19,8 @@
1919
\leq
2020
\int_\R \left\lvert u\phi \right\rvert
2121
\leq
22-
\norm{L^1}{u}
23-
\quad(\norm{\infty}{\phi} \leq 1)
22+
\norma{L^1}{u}
23+
\quad(\norma{\infty}{\phi} \leq 1)
2424
\end{align}
2525
%
2626
imply that every linear functional
@@ -55,12 +55,12 @@
5555
\sup\set{
5656
\magnitude{\bra{u}\ket{\phi}}
5757
}{
58-
\norm{\infty}{\phi} = 1
58+
\norma{\infty}{\phi} = 1
5959
}
60-
= \norm{L^1}{u}.
60+
= \norma{L^1}{u}.
6161
\end{align}
6262
%
63-
Note that, in the latter equality, $\leq \norm{L^1}{u}$ comes from %
63+
Note that, in the latter equality, $\leq \norma{L^1}{u}$ comes from %
6464
%
6565
(\ref{2.3 g bounded operator (1).}), %
6666
%
@@ -156,7 +156,7 @@
156156
}
157157
\item{
158158
The sequence $\singleton{\phi_j}$ converges (pointwise) to %
159-
$1_{[0, 1]} - 1_{[\minus 1, 0]}$, and $\norm{\infty}{\phi_{j}} = 1$. %
159+
$1_{[0, 1]} - 1_{[\minus 1, 0]}$, and $\norma{\infty}{\phi_{j}} = 1$. %
160160
}
161161
\end{enumerate}
162162
%
@@ -168,21 +168,21 @@
168168
2 \int_{0}^1 g_n(t) \phi^{+}_{j}(t) d t
169169
\tendsto{j}{\infty}
170170
2 \int_{0}^1 g_n(t) d t
171-
= \norm{L^1}{g_n} = n.
171+
= \norma{L^1}{g_n} = n.
172172
\end{align}
173173
%
174174
Finally, %
175175
%
176176
\begin{align}\label{2.3. Norm in the dual equals norm L1 (2).}
177-
\norm{L^1}{g_n}
177+
\norma{L^1}{g_n}
178178
\citeleq{\ref{2.3. Norm in the dual equals norm L1 (1).}}
179179
\sup\set{
180180
\magnitude{\bra{g_n}\ket{\phi}}
181181
}{
182-
\norm{\infty}{\phi} = 1
182+
\norma{\infty}{\phi} = 1
183183
}
184184
\citeleq{\ref{2.3 g bounded operator (2).}}
185-
\norm{L^1}{g_n};
185+
\norma{L^1}{g_n};
186186
\end{align} %
187187
%
188188
which is the desired result. %
@@ -195,13 +195,13 @@
195195
\bra{g_n}\ket{\phi}
196196
\right\rvert
197197
\leq
198-
C_{n} \quad (\norm{\infty}{\phi} = 1);
198+
C_{n} \quad (\norma{\infty}{\phi} = 1);
199199
\end{align}
200200
%
201201
see (\ref{2.3 g bounded operator (1).}).
202202
Furthermore, %
203203
%
204-
$\norm{L^1}{g_n}$ is actually the best, \ie lowest, possible $C_{n}$; see %
204+
$\norma{L^1}{g_n}$ is actually the best, \ie lowest, possible $C_{n}$; see %
205205
%
206206
(\ref{2.3. Norm in the dual equals norm L1 (2).}). %
207207
%
@@ -217,7 +217,7 @@
217217
%
218218
$\langle{g_n}\lvert{\phi_{\rho(n)}}\rangle$ %
219219
%
220-
is greater than, say, $n -0.01$, as $\norm{\infty}{\phi_{\rho(n)}} = 1$. %
220+
is greater than, say, $n -0.01$, as $\norma{\infty}{\phi_{\rho(n)}} = 1$. %
221221
%
222222
Consequently, there is no bound $M$ such that %%
223223
%
@@ -226,7 +226,7 @@
226226
\bra{g_n}\ket{\phi}
227227
\right\rvert
228228
\leq M
229-
\quad (\norm{\infty}{\phi} = 1; \counting{n}).
229+
\quad (\norma{\infty}{\phi} = 1; \counting{n}).
230230
\end{align}
231231
%
232232
In other words, the $g_n$ have no \textit{uniform bound} in ${L^1}$, %

0 commit comments

Comments
 (0)