Skip to content

Commit 04acc67

Browse files
committed
UPDATE: Chapter 4, review will start.
1 parent f73bdf4 commit 04acc67

File tree

4 files changed

+37
-37
lines changed

4 files changed

+37
-37
lines changed

FA_DM.pdf

19.9 KB
Binary file not shown.

chapter_4/4_13.tex

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -24,35 +24,35 @@
2424
%\end{align}
2525
We now easily obtain
2626
\begin{align}\label{4_13_a_3}
27-
\| T_{j\,} \tilde{x}_{j\,} -T_{\, k} \tilde{x}_{\, k}\| \<
27+
\| T_{j\,} \tilde{x}_{j\,} -T_{\, k} \tilde{x}_{\, k}\| \leq
2828
\| T_{j\,} \tilde{x}_{j\,}- y_{j\,}\| +
2929
\| y_{j\,} -T_{j\,} \tilde{x}_{k\,}\| +
3030
\| T_{j\,} - T_{ k\,}\| \underset{k> j\to \infty}{\longrightarrow}0\quad .
3131
\end{align}
3232
$\{T_{ j\,} \tilde{x}_{\, j} \}$ is then a Cauchy sequence. So is $\{T \,\tilde{x}_{\, j}\}$, since $\| T-T_{j}\,\| \to 0$. On the other hand, $Y$ is complete: (a) is then proved and we now establish the counterpart in a Hilbert space.\\
3333
\\
3434
%: b
35-
Fix $\eps$ as a positive scalar. Since $T$ is compact, $Y$ contains a finite set $C$ such that
35+
Fix $\epsilon$ as a positive scalar. Since $T$ is compact, $Y$ contains a finite set $C$ such that
3636
\begin{align}\label{4_13_b_1}
37-
T(U\,)\subseteq \bigcup_{c\in C} B(c,\, \eps)\quad .
37+
T(U\,)\subseteq \bigcup_{c\in C} B(c,\, \epsilon)\quad .
3838
\end{align}
3939
As a Hilbert space, $Y$ contains a \textsl{maximal orthonormal set} (or \textsl{Hilbert basis}) $M$. This implies that $\text{span}(M)$ is dense in $Y$; \cf 4.18 \& 4.22 of \cite{Big_Rudin}. The finiteness of $C$ forces $M$ to enclose a finite set $S$ so that
4040
\begin{align}\label{4_13_b_2}
41-
\forall c\in C, \, \exists s(c\,) \in \text{span} (S\,):\, \|c - s(c\,)\| <\eps\quad .
41+
\forall c\in C, \, \exists s(c\,) \in \text{span} (S\,):\, \|c - s(c\,)\| <\epsilon\quad .
4242
\end{align}
4343
Let $x$ be in $U$. It follows from (\ref{4_13_b_1}) that
4444
\begin{align}\label{4_13_b_3}
45-
\|Tx - c_x \| < \eps
45+
\|Tx - c_x \| < \epsilon
4646
\end{align}
4747
for some $c_x$ of $C$. We now combine (\ref{4_13_b_2}) and (\ref{4_13_b_3}) to obtain
4848
\begin{align}
49-
\|Tx - s(c_x) \| \< \| Tx - c_x \| + \| c_x - s(c_x)\| < 2\eps
49+
\|Tx - s(c_x) \| \leq \| Tx - c_x \| + \| c_x - s(c_x)\| < 2\epsilon
5050
\end{align}
5151
As a finite-dimensional subspace, $\text{span}(S\,)$ is closed (see footnote 4, Exercise 1.10). We so obtain
5252
\begin{align}
5353
Y=\text{span}(S\,)\oplus \text{span}(S\,)^\bot \quad ,
5454
\end{align}
55-
by [12.4]. There so exists a unique projection projection $\pi=\pi(\eps)$ of $Y$ onto itself (see [5.6] for the definition) such that
55+
by [12.4]. There so exists a unique projection projection $\pi=\pi(\epsilon)$ of $Y$ onto itself (see [5.6] for the definition) such that
5656
\begin{align}
5757
\pi (Y) = \text{span}(S\,)\, ,\, \, (I-\pi)(Y\,) = \text{span}(S\,)^\bot\quad .
5858
\end{align}
@@ -66,13 +66,13 @@
6666
\end{align}
6767
Then,
6868
\begin{align}
69-
\|( I- \pi )(T x) \| \< \| I- \pi \| \, \| Tx -s(c_x)\| < 4 \eps \quad (x\in U)\quad
69+
\|( I- \pi )(T x) \| \leq \| I- \pi \| \, \| Tx -s(c_x)\| < 4 \epsilon \quad (x\in U)\quad
7070
\end{align}
7171
(the fact that $\pi$ has norm $1$ is hidden in the right side inequality). We have just so proved that
7272
\begin{align}
73-
\| T-\pi\circ T\, \| \in \underset{\eps \sim 0}{O}(\eps) \quad .
73+
\| T-\pi\circ T\, \| \in \underset{\epsilon \sim 0}{O}(\epsilon) \quad .
7474
\end{align}
75-
That is particularly true whether $\eps=\eps_0,\, \eps_1,\, \eps_2,\, \dots ,\, \eps_n \underset{n\to \infty}{\longrightarrow} 0\,$. Let so $T_n$ be $ \pi(\eps_n) \circ T\,$ and conclude that these (compact) operators approximate $T$ in the desired fashion, \ie
75+
That is particularly true whether $\epsilon=\epsilon_0,\, \epsilon_1,\, \epsilon_2,\, \dots ,\, \epsilon_n \underset{n\to \infty}{\longrightarrow} 0\,$. Let so $T_n$ be $ \pi(\epsilon_n) \circ T\,$ and conclude that these (compact) operators approximate $T$ in the desired fashion, \ie
7676
\begin{align}
7777
\| T-T_n \| \underset{n \to \infty}{\longrightarrow} 0\quad .
7878
\end{align}

chapter_4/4_15.tex

Lines changed: 25 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -7,9 +7,9 @@
77
\renewcommand{\labelenumi}{(\alph{enumi})}
88
\item Prove that $T\in \mathscr{B}(L^2(\mu))$ and that
99
\begin{align*}
10-
\| T\, \|^2 \< \int_\Omega\int_\Omega \lvert K (s,t\,)\rvert ^2 d\mu (s\,) d\mu(t\,).
10+
\| T\, \|^2 \leq \int_\Omega\int_\Omega \lvert K (s,t\,)\rvert ^2 d\mu (s\,) d\mu(t\,).
1111
\end{align*}
12-
\item Suppose $a_i$, $b_i$ are members of $L^2(\mu)$, for $1\< i\< n$, put $K_1=\sum a_i(s\,)b_i(t\,)$ and define $T_1$ in terms of $K_1$ a $T$ was defined in terms of $K$. Prove that $\dim \mathscr{R}(T_1)\< n$.
12+
\item Suppose $a_i$, $b_i$ are members of $L^2(\mu)$, for $1\leq i\leq n$, put $K_1=\sum a_i(s\,)b_i(t\,)$ and define $T_1$ in terms of $K_1$ a $T$ was defined in terms of $K$. Prove that $\dim \mathscr{R}(T_1)\leq n$.
1313
\item Deduce that $T$ is a compact operator in $L^2(\mu)$. Hint: Use exercise 13.
1414
\item Suppose $\lambda\in \C,\, \lambda\neq 0$. Prove: Either the equation
1515
\begin{align*}Tf-\lambda f=g\end{align*}
@@ -20,28 +20,28 @@
2020
%: a
2121
\paragraph{PROOF.} Let $X$ (respectively $P\,$) be the Banach space $L^2(\mu)$ (respectively $L^2(\mu\times \mu)\,$). A consequence of the Radon-Nikodym theorem (\cf 6.16 of \cite{Big_Rudin}\,) is that there exists a group isomorphism $\rho:\, X\to \, X^{\,\ast},\, f\mapsto f^{\,\,\ast}$ such that
2222
\begin{align}
23-
\langle u ,\, f^{\,\,\ast} \rangle =\int_\Omega u\mdot f \, \d\mu \quad (u\in X,\, f\in X)\quad .
23+
\langle u ,\, f^{\,\,\ast} \rangle =\int_\Omega u\cdot f \, \d\mu \quad (u\in X,\, f\in X)\quad .
2424
\end{align}
2525
Define a.e $K_s,\, K_t:\, \Omega\to \C$ by setting
2626
\begin{align}
2727
K_s(t\,)\Def K_t(s\,)\Def K(s,\, t\,)\, \, \text{ a.e}\quad \left((s,t\,)\in \Omega\right)\quad .
2828
\end{align}
2929
$T$ is clearly linear. Moreover,
3030
\begin{align}
31-
\lvert (T f\,)(s\,) \rvert = \lvert \langle K_s,\, f^{\,\,\ast} \rangle \rvert \< \| K_s\|_X\quad(\|\,f\,\,\|_X < 1) \quad
31+
\lvert (T f\,)(s\,) \rvert = \lvert \langle K_s,\, f^{\,\,\ast} \rangle \rvert \leq \| K_s\|_X\quad(\|\,f\,\,\|_X < 1) \quad
3232
\end{align}
3333
(the latter inequality is a Cauchy-Schwarz one). Now apply the Fubini's theorem with $\lvert K\,\rvert^2$ to obtain
3434
\begin{align}
35-
\|Tf\,\,\|^2_X \< \int_\Omega \| K_s\|^2_X \, \,\d \mu (s\,) =\| K\,\|_P^2 \,< \infty \quad(\|\,f\,\,\|_X < 1)\quad .
35+
\|Tf\,\,\|^2_X \leq \int_\Omega \| K_s\|^2_X \, \,\d \mu (s\,) =\| K\,\|_P^2 \,< \infty \quad(\|\,f\,\,\|_X < 1)\quad .
3636
\end{align}
3737
(a) is then proved. \\
3838
\\
3939
%: b
4040
To show (b), remark that
4141
\begin{align}
42-
\int_\Omega a_i (s\,) \mdot b_i \mdot f \,\,\d\mu \,\,\in \C\mdot a_i(s\,)\,\,\,\text{a.e}\quad \quad (f\in X, \, s\in \Omega) \quad.
42+
\int_\Omega a_i (s\,) \cdot b_i \cdot f \,\,\d\mu \,\,\in \C\cdot a_i(s\,)\,\,\,\text{a.e}\quad \quad (f\in X, \, s\in \Omega) \quad.
4343
\end{align}
44-
It is now clear that $T$ maps any $f$ of $X$ into $\C \mdot a_1+\dotsb+ \C\mdot a_n$. We so conclude that $\dim R(T_1)\< n $. \\
44+
It is now clear that $T$ maps any $f$ of $X$ into $\C \cdot a_1+\dotsb+ \C\cdot a_n$. We so conclude that $\dim R(T_1)\leq n $. \\
4545
\\
4646
%: c
4747
We now aim at (c). The current part refers to Exercise 4.13. $X$ is also a Hilbert space and so contains a Hilbert basis $M$. Define a.e
@@ -51,25 +51,25 @@
5151
\end{align}
5252
whenever $b$ ranges $M$. Hence,
5353
\begin{align}
54-
K_s= \sum_{b\in M} a_b(s\,) \mdot b \, \text{ a.e} \quad (s\in \Omega) \quad.
54+
K_s= \sum_{b\in M} a_b(s\,) \cdot b \, \text{ a.e} \quad (s\in \Omega) \quad.
5555
\end{align}
56-
Provided any positive scalar $\eps$, there so exists a finite subset $S=S(\eps)$ of $M$ such that
56+
Provided any positive scalar $\epsilon$, there so exists a finite subset $S=S(\epsilon)$ of $M$ such that
5757
\begin{align}
58-
\| K_s - \sum_{b\in S} a_b(s\,) \mdot b\,\|_X < \eps \quad (s\in \Omega)\quad .
58+
\| K_s - \sum_{b\in S} a_b(s\,) \cdot b\,\|_X < \epsilon \quad (s\in \Omega)\quad .
5959
\end{align}
60-
Remark that $\underset{b\in S}{\sum} a_b \mdot b$ matches the definition of $K_1$; \cf(b): from now on,
60+
Remark that $\underset{b\in S}{\sum} a_b \cdot b$ matches the definition of $K_1$; \cf(b): from now on,
6161
\begin{align}
62-
K_1\Def \sum_{b\in S} a_b \mdot b\quad .
62+
K_1\Def \sum_{b\in S} a_b \cdot b\quad .
6363
\end{align}
6464
It follows from (b) that
6565
\begin{align}
6666
\dim R(K_1) < \infty \quad.
6767
\end{align}
6868
Now turn back to (a), with $K-K_1$ playing the role of $K$, and so obtain
6969
\begin{align}
70-
\|T-T_1\| < \eps \mu(\Omega)\< \infty \quad .
70+
\|T-T_1\| < \epsilon \mu(\Omega)\leq \infty \quad .
7171
\end{align}
72-
For if $\mu$ is finite, use (a) of Exercise 4.13 to conclude that $T$ is compact. Assume henceforth that $\mu$ is not (necessarily) finite and pick $\delta$ in $\R_+$. The simple functions (with finite measure support\,) form a dense family of an $L^p$ space ($1\< p<\infty$); \cf 3.13 of \cite{Big_Rudin}. It then exists a simple function $K_\delta$ of $L^2(\mu\times \mu)$ such that
72+
For if $\mu$ is finite, use (a) of Exercise 4.13 to conclude that $T$ is compact. Assume henceforth that $\mu$ is not (necessarily) finite and pick $\delta$ in $\R_+$. The simple functions (with finite measure support\,) form a dense family of an $L^p$ space ($1\leq p<\infty$); \cf 3.13 of \cite{Big_Rudin}. It then exists a simple function $K_\delta$ of $L^2(\mu\times \mu)$ such that
7373
\begin{align}
7474
(\mu\times\mu)\left(\{K_\delta\neq 0\}\right) <\infty \,, \,\, \| K-K_\delta \|_P <\delta\quad .
7575
\end{align}
@@ -79,13 +79,13 @@
7979
\end{align}
8080
The key ingredient is that $K_\delta$ can be identified with an element of the finite measure space $L^2(\{K_\delta\neq 0\},\mu\times\mu)\,$. What we have attempted to approximate $T$ by $T_1$ can therefore be reiterated (with $K_\delta$ playing the role of $K$) to achieve an approximation $T_{\delta,1}$ of $T_\delta$ so that
8181
\begin{align}\label{4_15_14}
82-
\|T_{\delta}-T_{\delta,1}\| < \eps\quad .
82+
\|T_{\delta}-T_{\delta,1}\| < \epsilon\quad .
8383
\end{align}
8484
It now follows from (\ref{4_15_13}) and (\ref{4_15_14}) that
8585
\begin{align}
86-
\|T-T_{\delta,1}\|\< \|T-T_{\delta}\| +\|T_{\delta}-T_{\delta,1}\| < \eps+\delta\quad .
86+
\|T-T_{\delta,1}\|\leq \|T-T_{\delta}\| +\|T_{\delta}-T_{\delta,1}\| < \epsilon+\delta\quad .
8787
\end{align}
88-
Since $\eps$ and $\delta$ were arbitrary, the $\sigma$-finite case is proved. We now establish (d).\\
88+
Since $\epsilon$ and $\delta$ were arbitrary, the $\sigma$-finite case is proved. We now establish (d).\\
8989
\\
9090
%: d
9191
Provided $g$ of $X$, let $E_g$ be the following equation on $X$
@@ -103,14 +103,14 @@
103103
\\
104104
Our last step is the description of $T^{\,\ast}$. Let $S:\, X\to X$ be such that
105105
\begin{align}
106-
(Sf\,)(t\,)\Def \int_\Omega K_t \mdot f \,\,\, \text{a.e}\quad \quad (\,f\in X,\, t\in \Omega)
106+
(Sf\,)(t\,)\Def \int_\Omega K_t \cdot f \,\,\, \text{a.e}\quad \quad (\,f\in X,\, t\in \Omega)
107107
\end{align}
108108
Proceed as in (a), with $S$ instead of $T$: $S$ lies in $\mathscr{B}(X)$. Next, we claim that
109109
\begin{align}
110110
\langle u,\, T^{\,\ast} f^{\,\,\ast} \rangle = &\, \langle Tu,\,f^{\,\,\ast} \rangle\\
111-
=& \int_{\Omega} (T u ) \mdot f \,\, \,\d\mu \\
112-
\label{int_Fubini}=& \int_{\Omega^2} K\mdot f \mdot u \,\,\, \d(\mu\times\mu) \\
113-
=& \int_{\Omega} (S f\, ) \mdot u \,\,\, \d\mu\, \\
111+
=& \int_{\Omega} (T u ) \cdot f \,\, \,\d\mu \\
112+
\label{int_Fubini}=& \int_{\Omega^2} K\cdot f \cdot u \,\,\, \d(\mu\times\mu) \\
113+
=& \int_{\Omega} (S f\, ) \cdot u \,\,\, \d\mu\, \\
114114
=&\, \langle u,\, (S f\, )^\ast \rangle \quad ,
115115
\end{align}
116116
whenever $u$ and $f$ run through the closed unit ball of $X$. Since $\|T\, \|$, $\| T^{\,\ast} \|$ are equal and finite, only exactness of (\ref{int_Fubini}) is possibly in doubt; the below justification dissipates it. In conclusion,
@@ -124,18 +124,18 @@
124124
\\
125125
\underline{Justification of (\ref{int_Fubini})}. The current proof shall be complete once we have justified (\ref{int_Fubini}). To do so, keep $u$ and $f$ as above. Let us introduce
126126
\begin{align}
127-
A(s\,)\Def \int_\Omega \lvert K_s(t\,) \mdot u (t\,)\rvert \,\, \d\mu(t\,) \, \,\,\text{a.e} \quad (s\in \Omega)\quad ,
127+
A(s\,)\Def \int_\Omega \lvert K_s(t\,) \cdot u (t\,)\rvert \,\, \d\mu(t\,) \, \,\,\text{a.e} \quad (s\in \Omega)\quad ,
128128
\end{align}
129129
to make hold the following Cauchy-Schwarz inequality
130130
\begin{align}
131-
A(s\,)\< \| K_s\|_X \quad (s\in \Omega)\quad .
131+
A(s\,)\leq \| K_s\|_X \quad (s\in \Omega)\quad .
132132
\end{align}
133133
Thus,
134134
\begin{align}
135135
\int_{\Omega^2} \lvert K(s,\,t\,) \, u(t\,)\, f\,(s\,) \rvert \,\d\mu(s\,)\d\mu(t\,)
136136
= & \int_\Omega \lvert \,f\,(s\,) \rvert \,A(s\,) \, \d\mu(s\,) \\
137-
\< & \int_\Omega \lvert \,f\,(s\,) \rvert \, \| K_s\|_X\,\d\mu(s\,) \\
138-
\label{4_15_complement_2} \< & \left[ \int_\Omega \| K_s\|_X^2\,\,\d\mu(s\,) \right]^{\frac{1}{2}}
137+
\leq & \int_\Omega \lvert \,f\,(s\,) \rvert \, \| K_s\|_X\,\d\mu(s\,) \\
138+
\label{4_15_complement_2} \leq & \left[ \int_\Omega \| K_s\|_X^2\,\,\d\mu(s\,) \right]^{\frac{1}{2}}
139139
= \| K\,\|_P < \infty \quad .
140140
\end{align}
141141
The inequality in (\ref{4_15_complement_2}) is a Cauchy-Schwarz one, the following equality follows from the Fubini's theorem. This achieves the proof.\QED

chapter_4/FA_chapter_4.tex

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -8,11 +8,11 @@ \section{Exercise 1. Basic results}
88
%
99

1010
\section{Exercise 13. Operator compactness in a Hilbert space}
11-
%\input{\ROOT/chapter_4/4_13.tex}
11+
\input{\ROOT/chapter_4/4_13.tex}
1212
\newpage
1313
%
1414
\setcounter{section}{14}
1515
%
1616
\section{Exercise 15. Hilbert-Schmidt operators}
17-
%\input{\ROOT/chapter_4/4_15.tex}
17+
\input{\ROOT/chapter_4/4_15.tex}
1818
\newpage

0 commit comments

Comments
 (0)