|
9 | 9 | \end{align} |
10 | 10 | Now let $m$ range over $\{1,\, 2,\,3,\, \dots\}$ and set $W_{m,\, j\,}$ in $\mathscr{D}(\Omega)$ as follows |
11 | 11 | \begin{align}\label{6_1_5a} |
12 | | -D^{\,\moins \alpha} \phi \in \mathscr{D}(\Omega):\, D^{\,\alpha} D^{\,\moins \alpha} \phi= \phi\quad . |
| 12 | +D^{\,\minus \alpha} \phi \in \mathscr{D}(\Omega):\, D^{\,\alpha} D^{\,\minus \alpha} \phi= \phi\quad . |
13 | 13 | \end{align} |
14 | 14 | %\begin{align}\label{6_1_5c} |
15 | | -%D^{\,\moins \alpha} \phi(x\,) \Def |
| 15 | +%D^{\,\minus \alpha} \phi(x\,) \Def |
16 | 16 | %\underset{ \alpha_1 \text{ time(s)} }{ |
17 | | - % \underbrace{ \int_{\moins \infty}^{x_1} \dotsc\int_{\moins\infty}^{x_1}} |
| 17 | + % \underbrace{ \int_{\minus \infty}^{x_1} \dotsc\int_{\minus\infty}^{x_1}} |
18 | 18 | % } |
19 | 19 | % \,\,\dotsc\, |
20 | 20 | % \underset{ \alpha_n \text{ time(s)} }{ |
21 | | - % \underbrace{ \int_{\moins \infty}^{x_n} \dotsc\int_{\moins\infty}^{x_n}} |
| 21 | + % \underbrace{ \int_{\minus \infty}^{x_n} \dotsc\int_{\minus\infty}^{x_n}} |
22 | 22 | % } |
23 | 23 | % \,\, \phi \quad (x\in \R^n)\quad . |
24 | 24 | % \end{align} |
25 | 25 | \begin{align}\label{6_1_5} |
26 | | -W_{m,\, j\,}(x\,)\Def D^{\,\moins (m,\dotsc,\,m)} ( \psi P_{(m,\dotsc, \, m),\, j\,}) |
| 26 | +W_{m,\, j\,}(x\,)\Def D^{\,\minus (m,\dotsc,\,m)} ( \psi P_{(m,\dotsc, \, m),\, j\,}) |
27 | 27 | \end{align} |
28 | 28 | By (\ref{6_1_4}), there exists a natural number $k(\!m)$ such that |
29 | 29 | \begin{align}\label{6_1_6} |
30 | | -\|D^{(m,\dotsc,\, m)} (f -W_{m,\, j}) \|_\infty < 1/m \quad (j\> k(\!m) )\quad . |
| 30 | +\|D^{(m,\dotsc,\, m)} (f -W_{m,\, j}) \|_\infty < 1/m \quad (j\geq k(\!m) )\quad . |
31 | 31 | \end{align} |
32 | 32 | Assume without loss of generality that $S$ has diameter $1$, so that (\ref{6_1_6}) yields |
33 | 33 | \begin{align}\label{6_1_7} |
34 | | -\|D^{\, \lambda } (f -W_{m,\, k(\!m)} ) \|_\infty < 1/m \quad ( \lvert \lambda \rvert \< m )\quad , |
35 | | -%\max \{ \lvert D^{\, \lambda}(f- W_{m,\, k(\!m) })(x\,)\rvert :\, x\in S,\, \lvert \lambda\rvert \< m\,\} < 1/m \quad |
| 34 | +\|D^{\, \lambda } (f -W_{m,\, k(\!m)} ) \|_\infty < 1/m \quad ( \lvert \lambda \rvert \leq m )\quad , |
| 35 | +%\max \{ \lvert D^{\, \lambda}(f- W_{m,\, k(\!m) })(x\,)\rvert :\, x\in S,\, \lvert \lambda\rvert \leq m\,\} < 1/m \quad |
36 | 36 | \end{align} |
37 | 37 | by the mean value theorem. In other words $(\text{remark that }\text{supp} (f -W_{m,\, k(\!m)}) \subseteq S\,)$, |
38 | 38 | \begin{align}\label{6_1_8} |
|
46 | 46 | \\ |
47 | 47 | Choose $\delta $ in $\R_+$ and fetch any $W_{m,\, k(\!m)}$. Let $X$ be $(X_1,\dotsc,\, X_n)$ and express $P_{(m,\dotsc,\, m\,),\, k(\!m)}$ as |
48 | 48 | \begin{align}\label{6_1_10} |
49 | | -P(X\,)=\sum_{\lvert \gamma \rvert \< d} p_\gamma \mdot X^{\,\gamma} \quad . |
| 49 | +P(X\,)=\sum_{\lvert \gamma \rvert \leq d} p_\gamma \cdot X^{\,\gamma} \quad . |
50 | 50 | \end{align} |
51 | | -Since $\overline{\Q}=\R$, $\Q[X\,]$ hosts some $\disp{Q(X\,)=\sum_{\lvert \gamma \rvert \< d} q_\gamma \mdot X^{\,\gamma}}$ such that $\lvert p_\gamma - q_\gamma\rvert < \delta\,$ for all $\gamma$. Thus, |
| 51 | +Since $\overline{\Q}=\R$, $\Q[X\,]$ hosts some $\{Q(X\,)=\sum_{\lvert \gamma \rvert \leq d} q_\gamma \cdot X^{\,\gamma}}$ such that $\lvert p_\gamma - q_\gamma\rvert < \delta\,$ for all $\gamma$. Thus, |
52 | 52 | \begin{align}\label{6_1_11} |
53 | | -\lvert P(x\,)-Q(x\,) \,\rvert \< \sum_{\lvert \gamma \rvert \< d} \lvert p_\gamma-q_\gamma\rvert\, \lvert x\,\rvert^{\lvert \gamma\rvert} \< \delta \sum_{l \< d} \binom{l+n-1}{n-1}\, \| \, x\, \|^{l}_\infty \quad (x\in \R^n)\quad . |
| 53 | +\lvert P(x\,)-Q(x\,) \,\rvert \leq \sum_{\lvert \gamma \rvert \leq d} \lvert p_\gamma-q_\gamma\rvert\, \lvert x\,\rvert^{\lvert \gamma\rvert} \leq \delta \sum_{l \leq d} \binom{l+n-1}{n-1}\, \| \, x\, \|^{l}_\infty \quad (x\in \R^n)\quad . |
54 | 54 | \end{align} |
55 | 55 | Since $S$ is bounded, we so obtain |
56 | 56 | \begin{align}\label{6_1_12} |
57 | 57 | \|\psi (P- Q) \|_\infty \in O(\delta) \quad . |
58 | 58 | \end{align} |
59 | | -Now define $\tilde{W}_m\,$ in terms of $Q$ as $W_{m,\, k(\!m)}$ was defined in terms of $P$, and consider the integrations made in (\ref{6_1_5}): each $D^{\,\lambda} \tilde{W}_m\,\, (\lvert \lambda \rvert\< m)$ can be obtained from some of them. So (\ref{6_1_12}) yields |
| 59 | +Now define $\tilde{W}_m\,$ in terms of $Q$ as $W_{m,\, k(\!m)}$ was defined in terms of $P$, and consider the integrations made in (\ref{6_1_5}): each $D^{\,\lambda} \tilde{W}_m\,\, (\lvert \lambda \rvert\leq m)$ can be obtained from some of them. So (\ref{6_1_12}) yields |
60 | 60 | \begin{align}\label{6_1_13} |
61 | | - \| D^{\,\lambda} (W_{m,\, k(\!m)} - \tilde{W}_m ) \|_\infty \in O(\delta)\quad (\lvert \lambda \rvert\< m) \quad . |
| 61 | + \| D^{\,\lambda} (W_{m,\, k(\!m)} - \tilde{W}_m ) \|_\infty \in O(\delta)\quad (\lvert \lambda \rvert\leq m) \quad . |
62 | 62 | \end{align} |
63 | 63 | To be more specific, these $\lambda$'s only exist in finite amount, so the big O can be assumed to be the same for all them. Since $\delta$ was arbitrary, combining (\ref{6_1_9}) with (\ref{6_1_13}) establishes the density of the all $\tilde{W}_m$'s family $\tilde{W}$.\\ |
64 | 64 | \\ |
|
0 commit comments