Skip to content

Commit f73bdf4

Browse files
committed
UPDATE: started reviewing chapter 6.
1 parent 415bd40 commit f73bdf4

File tree

7 files changed

+30
-29
lines changed

7 files changed

+30
-29
lines changed

FA_DM.pdf

20.6 KB
Binary file not shown.

FA_DM.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -130,7 +130,7 @@
130130
\newcommand{\function}[1]{\mathtt{#1}}
131131
\newcommand{\relation}[2]{{#1}_{#2}}
132132
\newcommand{\f}[2]{#1(#2)}
133-
\DeclareMathOperator\supp{supp}
133+
134134

135135
% Sets
136136
%\renewcommand{\notin}{\tiny{\not\in}}

chapter_6/6_1.tex

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,15 +1,15 @@
11
{\CMUCS Suppose $f$ is a complex continuous function in $\R^n$, with compact support. \!\!Prove that $\psi P_j\to \!f$ uniformly on $\R^n$, for some $\psi\in \mathscr{D}$ and for some sequence $\{P_j\,\}$ of polynomials.}
2-
\paragraph{PROOF.} According to 1.16, $\Omega$ is union of a compact sets sequence $\{K_{i\,}\}$ and $\text{supp} (f\,)$ lies in some $K= K_{i\,}$, so that $f\,$ is embedded in $\mathscr{D}(\Omega)\,$. We can apply [1.10] to ensure that $\Omega$ encloses a compact set $S=\overline{K +B(\eps)}$ for sufficiently small $\eps>0\,$.\\
2+
\paragraph{PROOF.} According to 1.16, $\Omega$ is union of a compact sets sequence $\{K_{i\,}\}$ and $\text{supp} (f\,)$ lies in some $K= K_{i\,}$, so that $f\,$ is embedded in $\mathscr{D}(\Omega)\,$. We can apply [1.10] to ensure that $\Omega$ encloses a compact set $S=\overline{K +B(\epsilon)}$ for sufficiently small $\epsilon>0\,$.\\
33
\\
44
One easily checks that the Stone-Weierstraß theorem [5.7] can be applied with the subalgebra $ \{ g\in C(S\,) :\, g \text{ is polynomial}\,\}$ of $C(S\,)\,$.
55
There so exists a sequence $\{P_j:\, j\in \N\}$ of $\R[X_1,\dotsc,\, X_n]\,$ such that
66
\begin{align}\label{6_1_1}
77
\sup_S \lvert\, f-P_{j\,} \rvert \underset{j\infty}{\longrightarrow} 0\quad.
88
\end{align}
9-
By [6.20], the open set $K +B(\eps)$ has a local partition of unity $\{\psi_i\}\subseteq \mathscr{D}(\Omega)\,$. Moreover, there exists an integer $l$ such that $\psi=\psi_1+\dotsb+\psi_l\,$ equals $1$ on $K\,$. Hence
9+
By [6.20], the open set $K +B(\epsilon)$ has a local partition of unity $\{\psi_i\}\subseteq \mathscr{D}(\Omega)\,$. Moreover, there exists an integer $l$ such that $\psi=\psi_1+\dotsb+\psi_l\,$ equals $1$ on $K\,$. Hence
1010
\begin{align}\label{6_1_2}
1111
\| \, f - \psi P_{j\,}\|_\infty= \, \| \,\psi f - \psi P_{j\,}\|_\infty
1212
= & \, \sup_S \lvert \, \psi f -\! \psi P_{j\,}\rvert \\
13-
\< & \, \sup_S \lvert \, f - \, P_{j\,} \rvert \, \overset{(\ref{6_1_1})}{\underset{j\infty}{\longrightarrow}} 0\quad .
13+
\minuseq & \, \sup_S \lvert \, f - \, P_{j\,} \rvert \, \overset{(\ref{6_1_1})}{\underset{j\infty}{\longrightarrow}} 0\quad .
1414
\end{align}
1515
\QED

chapter_6/6_1_Mat.tex

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -9,30 +9,30 @@
99
\end{align}
1010
Now let $m$ range over $\{1,\, 2,\,3,\, \dots\}$ and set $W_{m,\, j\,}$ in $\mathscr{D}(\Omega)$ as follows
1111
\begin{align}\label{6_1_5a}
12-
D^{\,\moins \alpha} \phi \in \mathscr{D}(\Omega):\, D^{\,\alpha} D^{\,\moins \alpha} \phi= \phi\quad .
12+
D^{\,\minus \alpha} \phi \in \mathscr{D}(\Omega):\, D^{\,\alpha} D^{\,\minus \alpha} \phi= \phi\quad .
1313
\end{align}
1414
%\begin{align}\label{6_1_5c}
15-
%D^{\,\moins \alpha} \phi(x\,) \Def
15+
%D^{\,\minus \alpha} \phi(x\,) \Def
1616
%\underset{ \alpha_1 \text{ time(s)} }{
17-
% \underbrace{ \int_{\moins \infty}^{x_1} \dotsc\int_{\moins\infty}^{x_1}}
17+
% \underbrace{ \int_{\minus \infty}^{x_1} \dotsc\int_{\minus\infty}^{x_1}}
1818
% }
1919
% \,\,\dotsc\,
2020
% \underset{ \alpha_n \text{ time(s)} }{
21-
% \underbrace{ \int_{\moins \infty}^{x_n} \dotsc\int_{\moins\infty}^{x_n}}
21+
% \underbrace{ \int_{\minus \infty}^{x_n} \dotsc\int_{\minus\infty}^{x_n}}
2222
% }
2323
% \,\, \phi \quad (x\in \R^n)\quad .
2424
% \end{align}
2525
\begin{align}\label{6_1_5}
26-
W_{m,\, j\,}(x\,)\Def D^{\,\moins (m,\dotsc,\,m)} ( \psi P_{(m,\dotsc, \, m),\, j\,})
26+
W_{m,\, j\,}(x\,)\Def D^{\,\minus (m,\dotsc,\,m)} ( \psi P_{(m,\dotsc, \, m),\, j\,})
2727
\end{align}
2828
By (\ref{6_1_4}), there exists a natural number $k(\!m)$ such that
2929
\begin{align}\label{6_1_6}
30-
\|D^{(m,\dotsc,\, m)} (f -W_{m,\, j}) \|_\infty < 1/m \quad (j\> k(\!m) )\quad .
30+
\|D^{(m,\dotsc,\, m)} (f -W_{m,\, j}) \|_\infty < 1/m \quad (j\geq k(\!m) )\quad .
3131
\end{align}
3232
Assume without loss of generality that $S$ has diameter $1$, so that (\ref{6_1_6}) yields
3333
\begin{align}\label{6_1_7}
34-
\|D^{\, \lambda } (f -W_{m,\, k(\!m)} ) \|_\infty < 1/m \quad ( \lvert \lambda \rvert \< m )\quad ,
35-
%\max \{ \lvert D^{\, \lambda}(f- W_{m,\, k(\!m) })(x\,)\rvert :\, x\in S,\, \lvert \lambda\rvert \< m\,\} < 1/m \quad
34+
\|D^{\, \lambda } (f -W_{m,\, k(\!m)} ) \|_\infty < 1/m \quad ( \lvert \lambda \rvert \leq m )\quad ,
35+
%\max \{ \lvert D^{\, \lambda}(f- W_{m,\, k(\!m) })(x\,)\rvert :\, x\in S,\, \lvert \lambda\rvert \leq m\,\} < 1/m \quad
3636
\end{align}
3737
by the mean value theorem. In other words $(\text{remark that }\text{supp} (f -W_{m,\, k(\!m)}) \subseteq S\,)$,
3838
\begin{align}\label{6_1_8}
@@ -46,19 +46,19 @@
4646
\\
4747
Choose $\delta $ in $\R_+$ and fetch any $W_{m,\, k(\!m)}$. Let $X$ be $(X_1,\dotsc,\, X_n)$ and express $P_{(m,\dotsc,\, m\,),\, k(\!m)}$ as
4848
\begin{align}\label{6_1_10}
49-
P(X\,)=\sum_{\lvert \gamma \rvert \< d} p_\gamma \mdot X^{\,\gamma} \quad .
49+
P(X\,)=\sum_{\lvert \gamma \rvert \leq d} p_\gamma \cdot X^{\,\gamma} \quad .
5050
\end{align}
51-
Since $\overline{\Q}=\R$, $\Q[X\,]$ hosts some $\disp{Q(X\,)=\sum_{\lvert \gamma \rvert \< d} q_\gamma \mdot X^{\,\gamma}}$ such that $\lvert p_\gamma - q_\gamma\rvert < \delta\,$ for all $\gamma$. Thus,
51+
Since $\overline{\Q}=\R$, $\Q[X\,]$ hosts some $\{Q(X\,)=\sum_{\lvert \gamma \rvert \leq d} q_\gamma \cdot X^{\,\gamma}}$ such that $\lvert p_\gamma - q_\gamma\rvert < \delta\,$ for all $\gamma$. Thus,
5252
\begin{align}\label{6_1_11}
53-
\lvert P(x\,)-Q(x\,) \,\rvert \< \sum_{\lvert \gamma \rvert \< d} \lvert p_\gamma-q_\gamma\rvert\, \lvert x\,\rvert^{\lvert \gamma\rvert} \< \delta \sum_{l \< d} \binom{l+n-1}{n-1}\, \| \, x\, \|^{l}_\infty \quad (x\in \R^n)\quad .
53+
\lvert P(x\,)-Q(x\,) \,\rvert \leq \sum_{\lvert \gamma \rvert \leq d} \lvert p_\gamma-q_\gamma\rvert\, \lvert x\,\rvert^{\lvert \gamma\rvert} \leq \delta \sum_{l \leq d} \binom{l+n-1}{n-1}\, \| \, x\, \|^{l}_\infty \quad (x\in \R^n)\quad .
5454
\end{align}
5555
Since $S$ is bounded, we so obtain
5656
\begin{align}\label{6_1_12}
5757
\|\psi (P- Q) \|_\infty \in O(\delta) \quad .
5858
\end{align}
59-
Now define $\tilde{W}_m\,$ in terms of $Q$ as $W_{m,\, k(\!m)}$ was defined in terms of $P$, and consider the integrations made in (\ref{6_1_5}): each $D^{\,\lambda} \tilde{W}_m\,\, (\lvert \lambda \rvert\< m)$ can be obtained from some of them. So (\ref{6_1_12}) yields
59+
Now define $\tilde{W}_m\,$ in terms of $Q$ as $W_{m,\, k(\!m)}$ was defined in terms of $P$, and consider the integrations made in (\ref{6_1_5}): each $D^{\,\lambda} \tilde{W}_m\,\, (\lvert \lambda \rvert\leq m)$ can be obtained from some of them. So (\ref{6_1_12}) yields
6060
\begin{align}\label{6_1_13}
61-
\| D^{\,\lambda} (W_{m,\, k(\!m)} - \tilde{W}_m ) \|_\infty \in O(\delta)\quad (\lvert \lambda \rvert\< m) \quad .
61+
\| D^{\,\lambda} (W_{m,\, k(\!m)} - \tilde{W}_m ) \|_\infty \in O(\delta)\quad (\lvert \lambda \rvert\leq m) \quad .
6262
\end{align}
6363
To be more specific, these $\lambda$'s only exist in finite amount, so the big O can be assumed to be the same for all them. Since $\delta$ was arbitrary, combining (\ref{6_1_9}) with (\ref{6_1_13}) establishes the density of the all $\tilde{W}_m$'s family $\tilde{W}$.\\
6464
\\

chapter_6/6_6.tex

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
\renewcommand{\labelenumi}{(\alph{enumi})}
33
{\CMUCS
44
\begin{enumerate}
5-
\item Suppose that $c_m=\exp\{\moins (m!)!\}$, $m=0,\, 1,\, 2,\, \dots\, $. Does the series
5+
\item Suppose that $c_m=\exp\{\minus (m!)!\}$, $m=0,\, 1,\, 2,\, \dots\, $. Does the series
66
\begin{align*}{
77
\sum_{m=0}^\infty c_m (D^m\phi)(0)
88
}\end{align*}
@@ -17,11 +17,11 @@
1717
\\
1818
To do so we assume $\{\Lambda_j\}$ to converge to some $\Lambda$ of $\mathscr{D}'(\Omega)$ and we let $Q$ run through the compact sets of $\Omega\,$. Next, we define
1919
\begin{align}{\label{6_6_1}
20-
S(T,\, Q\,)\Def \{N\in \N, \, \exists C\in \R_+:\, \lvert T\phi\, \rvert \< C\, \| \phi \|_N \,\text{ for all }\phi \text{ of } \mathscr{D}_Q \}\quad (T\in \mathscr{D}(\Omega))\quad .
20+
S(T,\, Q\,)\Def \{N\in \N, \, \exists C\in \R_+:\, \lvert T\phi\, \rvert \leq C\, \| \phi \|_N \,\text{ for all }\phi \text{ of } \mathscr{D}_Q \}\quad (T\in \mathscr{D}(\Omega))\quad .
2121
}\end{align}
2222
Such subset of $\N$ has a minimum $\omega(T,\, Q)$. The following value
2323
\begin{align}{\label{6_6_2}
24-
\omega (T\,) \Def \max\{ \omega(T,\, Q\,): \, Q\subseteq \Omega\, , \,\, Q \text{ compact }\}\< \infty
24+
\omega (T\,) \Def \max\{ \omega(T,\, Q\,): \, Q\subseteq \Omega\, , \,\, Q \text{ compact }\}\leq \infty
2525
}\end{align}
2626
is then the order of $T$. Assume, to reach a contradiction, that, after passage to a subsequence,
2727
\begin{align}{\label{6_6_3}
@@ -30,11 +30,11 @@
3030
for some compact $Q=Q_j\,$. By (a) of [6.24], $Q_j$ cuts $\text{supp}\Lambda_j\,$, say in $p_j\,$. Since $K$ encloses $\text{supp}\Lambda_j\,$, $\{p_j\}$ tends, after passage to a subsequence, to some $p$ of $K\,$.
3131
Choose a positive scalar $r$ so that
3232
\begin{align}{\label{6_6_5}
33-
\overline{B}(p,\, r)\Def \{ x\in \R^n:\, \lvert x-p\,\rvert\< r\}\subseteq \Omega \quad .
33+
\overline{B}(p,\, r)\Def \{ x\in \R^n:\, \lvert x-p\,\rvert\leq r\}\subseteq \Omega \quad .
3434
}\end{align}
3535
Such closed ball $\overline{B}(p,\, r)$ is a compact subset of $\Omega$. By (b) of [6.5] (which refers to [1.46]) $\mathscr{D}_{\overline{B}(p,\, r)}$ is then a Fréchet space. It now follows from [2.6] that $\{\Lambda_j\}$ is equicontinuous on $\mathscr{D}_{\overline{B}(p,\, r)}\,$. There so exists\footnote{For more details, see Exercise 2.3.} a nonnegative integer $N$ such that
3636
\begin{align}{\label{6_6_6}
37-
\lvert \Lambda \phi \,\rvert \< C\, \| \phi \|_N \quad (\phi \in \mathscr{D}_{\overline{B}(p,\, r)})
37+
\lvert \Lambda \phi \,\rvert \leq C\, \| \phi \|_N \quad (\phi \in \mathscr{D}_{\overline{B}(p,\, r)})
3838
}\end{align}
3939
for some positive constant $C$. On the other hand, $\overline{B}(p,\, r)$ contains almost all the $p_j$'s. Hence
4040
\begin{align}{\label{6_6_7}
@@ -45,12 +45,12 @@
4545
To prove (c), we introduce a sequence $\{x_m:\, m\in \Z\}$ of $ \Omega$ that has no limit point. Let $\{ \alpha_m:\, m\in \Z\}$ be in $\N$ and so define\footnote{As $\Omega=\R\,$, the case $\alpha_m= m$ is the ``counterpart" of the series of (a) and the case $(x_m,\, \alpha_m)= (m,\, 0)$ is the \textsl{Dirac comb}.}
4646
\begin{align}{
4747
\Lambda:\, \mathscr{D}(\Omega) \to & \, \C \qquad\qquad\qquad\qquad .\\
48-
\phi \mapsto & \, \sum_{m=\moins \infty}^\infty (D^{\,\alpha_m}\phi)(x_m) \nonumber
48+
\phi \mapsto & \, \sum_{m=\minus \infty}^\infty (D^{\,\alpha_m}\phi)(x_m) \nonumber
4949
}\end{align}
5050
$\Lambda$ belongs to $\mathscr{D}'(\Omega)$, since $\{x_m\}$ has no limit point. Next, we easily check that
5151
\begin{align}{
5252
\Lambda_j:\, \mathscr{D}(\Omega) \to & \, \C \qquad\qquad\qquad\qquad(j\in \N)\\
53-
\phi \mapsto & \, \sum_{\lvert m\rvert \< j} (D^{\,\alpha_m}\phi)(x_m) \nonumber
53+
\phi \mapsto & \, \sum_{\lvert m\rvert \leq j} (D^{\,\alpha_m}\phi)(x_m) \nonumber
5454
}\end{align}
5555
is also a distribution and that $\{\Lambda_j\}$ tends to $\Lambda$ in $\mathscr{D}'(\Omega)$. Nevertheless, no $\Lambda_j$'s can have common support because $\{x_m\}$ has no limit point. Our assumption can therefore be dropped.\QED
5656

chapter_6/6_9mat.tex

Whitespace-only changes.

chapter_6/FA_chapter_6.tex

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,13 +1,14 @@
11
%!TEX root = /Volumes/HD_2/Rudin/Rudin_DM.tex
22
\section{Exercise 1. Test functions are almost polynomial}
3-
%\input{\ROOT/chapter_6/6_1.tex}
3+
\input{\ROOT/chapter_6/6_1.tex}
4+
\input{\ROOT/chapter_6/6_1_Mat.tex}
45
\setcounter{section}{5}
56
\section{Exercise 6. Around the supports of some distributions}
6-
%\input{\ROOT/chapter_6/6_6.tex}
7+
\input{\ROOT/chapter_6/6_6.tex}
78
\setcounter{section}{8}
89
\section{Exercise 9. Convergence in $\mathscr{D}(\Omega)\,$ vs. convergence in $\mathscr{D}'(\Omega)\,$}
9-
%\input{\ROOT/chapter_6/6_9.tex}
10-
\setcounter{section}{16}
11-
\section{Exercise 17. }
10+
\input{\ROOT/chapter_6/6_9.tex}
11+
%\setcounter{section}{16}
12+
%\section{Exercise 17. }
1213
%\input{\ROOT/chapter_6/6_17.tex}
1314

0 commit comments

Comments
 (0)