Skip to content

firefly-cpp/NiaARM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

logo

NiaARM

A minimalistic framework for Numerical Association Rule Mining

PyPI Version PyPI - Python Version PyPI - Downloads Fedora package AUR package Packaging status Downloads GitHub license NiaARM Documentation status

GitHub commit activity Percentage of issues still open Average time to resolve an issue All Contributors

DOI

πŸ” Detailed insights β€’ πŸ“¦ Installation β€’ πŸš€ Usage β€’ πŸ“„ Cite us β€’ πŸ“š References β€’ πŸ“– See also β€’ πŸ”‘ License β€’ πŸ«‚ Contributors

NiaARM is a framework for Association Rule Mining based on nature-inspired algorithms for optimization. 🌿 The framework is written fully in Python and runs on all platforms. NiaARM allows users to preprocess the data in a transaction database automatically, to search for association rules and provide a pretty output of the rules found. πŸ“Š This framework also supports integral and real-valued types of attributes besides the categorical ones. Mining the association rules is defined as an optimization problem, and solved using the nature-inspired algorithms that come from the related framework called NiaPy. πŸ”—

πŸ” Detailed insights

The current version includes (but is not limited to) the following functions:

  • loading datasets in CSV format πŸ“
  • preprocessing of data 🧹
  • searching for association rules πŸ”Ž
  • providing output of mined association rules πŸ“‹
  • generating statistics about mined association rules πŸ“Š
  • visualization of association rules πŸ“ˆ
  • association rule text mining (experimental) πŸ“„

πŸ“¦ Installation

pip

To install NiaARM with pip, use:

pip install niaarm

To install NiaARM on Alpine Linux, enable Community repository and use:

$ apk add py3-niaarm

To install NiaARM on Arch Linux, use an AUR helper:

$ yay -Syyu python-niaarm

To install NiaARM on Fedora, use:

$ dnf install python3-niaarm

To install NiaARM on NixOS, use:

nix-env -iA nixos.python311Packages.niaarm

πŸš€ Usage

Loading data

In NiaARM, data loading is done via the Dataset class. There are two options for loading data:

Option 1: From a pandas DataFrame (recommended)

import pandas as pd from niaarm import Dataset df = pd.read_csv('datasets/Abalone.csv') # preprocess data... data = Dataset(df) print(data) # printing the dataset will generate a feature report

Option 2: Directly from a CSV file

from niaarm import Dataset data = Dataset('datasets/Abalone.csv') print(data)

Preprocessing

Data Squashing

Optionally, a preprocessing technique, called data squashing [5], can be applied. This will significantly reduce the number of transactions, while providing similar results to the original dataset.

from niaarm import Dataset, squash dataset = Dataset('datasets/Abalone.csv') squashed = squash(dataset, threshold=0.9, similarity='euclidean') print(squashed)

Mining association rules

The easy way (recommended)

Association rule mining can be easily performed using the get_rules function:

from niaarm import Dataset, get_rules from niapy.algorithms.basic import DifferentialEvolution data = Dataset("datasets/Abalone.csv") algo = DifferentialEvolution(population_size=50, differential_weight=0.5, crossover_probability=0.9) metrics = ('support', 'confidence') rules, run_time = get_rules(data, algo, metrics, max_iters=30, logging=True) print(rules) # Prints basic stats about the mined rules print(f'Run Time: {run_time}') rules.to_csv('output.csv')

The hard way

The above example can be also be implemented using a more low level interface, with the NiaARM class directly:

from niaarm import NiaARM, Dataset from niapy.algorithms.basic import DifferentialEvolution from niapy.task import Task, OptimizationType data = Dataset("datasets/Abalone.csv") # Create a problem # dimension represents the dimension of the problem; # features represent the list of features, while transactions depicts the list of transactions # metrics is a sequence of metrics to be taken into account when computing the fitness; # you can also pass in a dict of the shape {'metric_name': <weight of metric in range [0, 1]>}; # when passing a sequence, the weights default to 1. problem = NiaARM(data.dimension, data.features, data.transactions, metrics=('support', 'confidence'), logging=True) # build niapy task task = Task(problem=problem, max_iters=30, optimization_type=OptimizationType.MAXIMIZATION) # use Differential Evolution (DE) algorithm from the NiaPy library # see full list of available algorithms: https://github.com/NiaOrg/NiaPy/blob/master/Algorithms.md algo = DifferentialEvolution(population_size=50, differential_weight=0.5, crossover_probability=0.9) # run algorithm best = algo.run(task=task) # sort rules problem.rules.sort() # export all rules to csv problem.rules.to_csv('output.csv')

Interest measures

The framework implements several popular interest measures, which can be used to compute the fitness function value of rules and for assessing the quality of the mined rules. A full list of the implemented interest measures along with their descriptions and equations can be found here.

Visualization

The framework currently supports (visualizations):

  • hill slopes (presented in [4]),
  • scatter plot and
  • grouped matrix plot visualization methods.

More visualization methods are planned to be implemented in future releases.

Hill Slopes

from matplotlib import pyplot as plt from niaarm import Dataset, get_rules from niaarm.visualize import hill_slopes dataset = Dataset('datasets/Abalone.csv') metrics = ('support', 'confidence') rules, _ = get_rules(dataset, 'DifferentialEvolution', metrics, max_evals=1000, seed=1234) some_rule = rules[150] hill_slopes(some_rule, dataset.transactions) plt.show()

logo

Scatter Plot

from examples.visualization_examples.prepare_datasets import get_weather_data from niaarm import Dataset, get_rules from niaarm.visualize import scatter_plot # Get prepared data arm_df = get_weather_data() # Prepare Dataset dataset = Dataset(path_or_df=arm_df,delimiter=",") # Get rules metrics = ("support", "confidence") rules, run_time = get_rules(dataset, "DifferentialEvolution", metrics, max_evals=500) # Add lift to metrics metrics = list(metrics) metrics.append("lift") metrics = tuple(metrics) # Visualize scatter plot fig = scatter_plot(rules=rules, metrics=metrics, interactive=False) fig.show()

logo

Grouped Matrix Plot

from examples.visualization_examples.prepare_datasets import get_football_player_data from niaarm import Dataset, get_rules from niaarm.visualize import grouped_matrix_plot # Get prepared data arm_df = get_football_player_data() # Prepare Dataset dataset = Dataset(path_or_df=arm_df, delimiter=",") # Get rules metrics = ("support", "confidence") rules, run_time = get_rules(dataset, "DifferentialEvolution", metrics, max_evals=500) # Add lift to metrics metrics = list(metrics) metrics.append("lift") metrics = tuple(metrics) # Visualize grouped matrix plot fig = grouped_matrix_plot(rules=rules, metrics=metrics, k=5, interactive=False) fig.show()

logo

Text Mining (Experimental)

An experimental implementation of association rule text mining using nature-inspired algorithms, based on ideas from [5] is also provided. The niaarm.text module contains the Corpus and Document classes for loading and preprocessing corpora, a TextRule class, representing a text rule, and the NiaARTM class, implementing association rule text mining as a continuous optimization problem. The get_text_rules function, equivalent to get_rules, but for text mining, was also added to the niaarm.mine module.

import pandas as pd from niaarm.text import Corpus from niaarm.mine import get_text_rules from niapy.algorithms.basic import ParticleSwarmOptimization df = pd.read_json('datasets/text/artm_test_dataset.json', orient='records') documents = df['text'].tolist() corpus = Corpus.from_list(documents) algorithm = ParticleSwarmOptimization(population_size=200, seed=123) metrics = ('support', 'confidence', 'aws') rules, time = get_text_rules(corpus, max_terms=5, algorithm=algorithm, metrics=metrics, max_evals=10000, logging=True) print(rules) print(f'Run time: {time:.2f}s') rules.to_csv('output.csv')

Note: You may need to download stopwords and the punkt tokenizer from nltk by running import nltk; nltk.download('stopwords'); nltk.download('punkt').

For a full list of examples see the examples folder in the GitHub repository.

Command line interface

We provide a simple command line interface, which allows you to easily mine association rules on any input dataset, output them to a csv file and/or perform a simple statistical analysis on them. For more details see the documentation.

niaarm -h
usage: niaarm [-h] [-v] [-c CONFIG] [-i INPUT_FILE] [-o OUTPUT_FILE] [--squashing-similarity {euclidean,cosine}] [--squashing-threshold SQUASHING_THRESHOLD] [-a ALGORITHM] [-s SEED] [--max-evals MAX_EVALS] [--max-iters MAX_ITERS] [--metrics METRICS [METRICS ...]] [--weights WEIGHTS [WEIGHTS ...]] [--log] [--stats] Perform ARM, output mined rules as csv, get mined rules' statistics options: -h, --help show this help message and exit -v, --version show program's version number and exit -c CONFIG, --config CONFIG Path to a TOML config file -i INPUT_FILE, --input-file INPUT_FILE Input file containing a csv dataset -o OUTPUT_FILE, --output-file OUTPUT_FILE Output file for mined rules --squashing-similarity {euclidean,cosine} Similarity measure to use for squashing --squashing-threshold SQUASHING_THRESHOLD Threshold to use for squashing -a ALGORITHM, --algorithm ALGORITHM Algorithm to use (niapy class name, e.g. DifferentialEvolution) -s SEED, --seed SEED Seed for the algorithm's random number generator --max-evals MAX_EVALS Maximum number of fitness function evaluations --max-iters MAX_ITERS Maximum number of iterations --metrics METRICS [METRICS ...] Metrics to use in the fitness function. --weights WEIGHTS [WEIGHTS ...] Weights in range [0, 1] corresponding to --metrics --log Enable logging of fitness improvements --stats Display stats about mined rules 

Note: The CLI script can also run as a python module (python -m niaarm ...)

πŸ“„ Cite us

Stupan, Ε½., & Fister Jr., I. (2022). NiaARM: A minimalistic framework for Numerical Association Rule Mining. Journal of Open Source Software, 7(77), 4448.

πŸ“š References

Ideas are based on the following research papers:

[1] I. Fister Jr., A. Iglesias, A. GΓ‘lvez, J. Del Ser, E. Osaba, I Fister. Differential evolution for association rule mining using categorical and numerical attributes In: Intelligent data engineering and automated learning - IDEAL 2018, pp. 79-88, 2018.

[2] I. Fister Jr., V. Podgorelec, I. Fister. Improved Nature-Inspired Algorithms for Numeric Association Rule Mining. In: Vasant P., Zelinka I., Weber GW. (eds) Intelligent Computing and Optimization. ICO 2020. Advances in Intelligent Systems and Computing, vol 1324. Springer, Cham.

[3] I. Fister Jr., I. Fister A brief overview of swarm intelligence-based algorithms for numerical association rule mining. arXiv preprint arXiv:2010.15524 (2020).

[4] Fister, I. et al. (2020). Visualization of Numerical Association Rules by Hill Slopes. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2020. IDEAL 2020. Lecture Notes in Computer Science(), vol 12489. Springer, Cham. https://doi.org/10.1007/978-3-030-62362-3_10

[5] I. Fister, S. Deb, I. Fister, Population-based metaheuristics for Association Rule Text Mining, In: Proceedings of the 2020 4th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, New York, NY, USA, mar. 2020, pp. 19–23. doi: 10.1145/3396474.3396493.

[6] I. Fister, I. Fister Jr., D. Novak and D. Verber, Data squashing as preprocessing in association rule mining, 2022 IEEE Symposium Series on Computational Intelligence (SSCI), Singapore, Singapore, 2022, pp. 1720-1725, doi: 10.1109/SSCI51031.2022.10022240.

πŸ“– See also

[1] NiaARM.jl: Numerical Association Rule Mining in Julia

[2] arm-preprocessing: Implementation of several preprocessing techniques for Association Rule Mining (ARM)

πŸ”‘ License

This package is distributed under the MIT License. This license can be found online at http://www.opensource.org/licenses/MIT.

Disclaimer

This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!

πŸ«‚ Contributors

Thanks goes to these wonderful people (emoji key):

zStupan
zStupan

πŸ’» πŸ› πŸ“– πŸ–‹ πŸ€” πŸ’‘
Iztok Fister Jr.
Iztok Fister Jr.

πŸ’» πŸ› πŸ§‘β€πŸ« 🚧 πŸ€”
Erkan Karabulut
Erkan Karabulut

πŸ’» πŸ›
Tadej Lahovnik
Tadej Lahovnik

πŸ“–
Ben Beasley
Ben Beasley

πŸ“–
Dusan Fister
Dusan Fister

🎨

This project follows the all-contributors specification. Contributions of any kind welcome!

About

A minimalistic framework for Numerical Association Rule Mining

Topics

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 10