Given an array, rotate the array to the right by k steps, where k is non-negative.
Example 1: Input: [1,2,3,4,5,6,7] and k = 3 Output: [5,6,7,1,2,3,4] Explanation: rotate 1 steps to the right: [7,1,2,3,4,5,6] rotate 2 steps to the right: [6,7,1,2,3,4,5] rotate 3 steps to the right: [5,6,7,1,2,3,4] Example 2: Input: [-1,-100,3,99] and k = 2 Output: [3,99,-1,-100] Explanation: rotate 1 steps to the right: [99,-1,-100,3] rotate 2 steps to the right: [3,99,-1,-100]
import java.util.Arrays; public class App { public static void main(String[] args) { int[] input = {1, 2, 3, 4, 5, 6, 7}; rotate(input, 3); System.out.println(Arrays.toString(input)); } public static void rotate(int[] nums, int k) { for(int i = 1; i<= k; i++) { rotateArrayByOne(nums); } } public static void rotateArrayByOne(int[] nums) { int last = nums[nums.length-1]; for(int i = nums.length-2; i >= 0; i--) { nums[i+1] = nums[i]; } nums[0] = last; } }
Above implementation have Runtime complexity of O(kn) and space complexity of O(1)
Runtime Complexity = O(kn) Space Complexity = O(1)
import java.util.Arrays; public class App { public static void main(String[] args) { int[] input = { 1, 2}; rotate(input, 3); System.out.println(Arrays.toString(input)); } public static void rotate(int[] nums, int k) { int[] temp = new int[nums.length]; for(int i = 0; i < nums.length; i++) { temp[(i+k) % nums.length] = nums[i]; } for(int i = 0; i < temp.length; i++) { nums[i] = temp[i]; } } }
Above implementation have Runtime complexity of O(n) and space complexity of O(n)
Runtime Complexity = O(n) Space Complexity = O(n)
import java.util.Arrays; public class App { public static void main(String[] args) { int[] input = {1, 2}; rotate(input, 3); System.out.println(Arrays.toString(input)); } public static void rotate(int[] nums, int k) { k %= nums.length; int length = nums.length; int[] temp = new int[k]; for(int i = 0; i < k; i++) { temp[i] = nums[length - k + i]; } for(int i = length - k - 1; i >= 0; i--) { nums[i + k] = nums[i]; } for(int i = 0; i < k; i++) { nums[i] = temp[i]; } } }
Above implementation have Runtime complexity of O(n) and space complexity of O(k)
Runtime Complexity = O(n) Space Complexity = O(k)
import java.util.Arrays; public class App { public static void main(String[] args) { int[] input = { 1, 2, 3, 4, 5, 6, 7 }; rotate(input, 3); System.out.println(Arrays.toString(input)); } public static void rotate(int[] nums, int k) { k = k % nums.length; reverse(nums, nums.length - k, nums.length - 1); reverse(nums, 0, nums.length - k - 1); reverse(nums, 0, nums.length - 1); } public static void reverse(int[] nums, int start, int end) { while (start < end) { int temp = nums[start]; nums[start++] = nums[end]; nums[end--] = temp; } } }
Above implementation have Runtime complexity of O(n) and space complexity of O(1)
Runtime Complexity = O(n) Space Complexity = O(1)
k = k % nums.length;