Skip to content

dangweili/pedestrian-attribute-recognition-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Implement of Deep Multi-attribute Recognition model under ResNet50 backbone network

Preparation

Prerequisite: Python 2.7 and Pytorch 0.3.1

  1. Install Pytorch

  2. Download and prepare the dataset as follow:

    a. PETA Baidu Yun, passwd: 5vep, or Google Drive.

    ./dataset/peta/images/*.png ./dataset/peta/PETA.mat ./dataset/peta/README 
    python script/dataset/transform_peta.py 

    b. RAP Google Drive.

    ./dataset/rap/RAP_dataset/*.png ./dataset/rap/RAP_annotation/RAP_annotation.mat 
    python script/dataset/transform_rap.py 

    c. PA100K Links

    ./dataset/pa100k/data/*.png ./dataset/pa100k/annotation.mat 
    python script/dataset/transform_pa100k.py 

    d. RAP(v2) Links.

    ./dataset/rap2/RAP_dataset/*.png ./dataset/rap2/RAP_annotation/RAP_annotation.mat 
    python script/dataset/transform_rap2.py 

Train the model

sh script/experiment/train.sh 

Test the model

sh script/experiment/test.sh 

Demo

python script/experiment/demo.py 

Citation

Please cite this paper in your publications if it helps your research:
@inproceedings{li2015deepmar, author = {Dangwei Li and Xiaotang Chen and Kaiqi Huang}, title = {Multi-attribute Learning for Pedestrian Attribute Recognition in Surveillance Scenarios}, booktitle = {ACPR}, pages={111--115}, year = {2015} } 

Thanks

Partial codes are based on the repository from Houjing Huang.

The code should only be used for academic research.

About

A simple baseline for pedestrian attribute recognition in surveillance scenarios

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages