Skip to content

Conversation

codeflash-ai[bot]
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Aug 4, 2025

📄 145,189% (1,451.89x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 3.69 seconds 2.54 milliseconds (best of 120 runs)

📝 Explanation and details

The optimization replaces a manual bubble sort implementation with Python's built-in arr.sort() method.

Key changes:

  • Eliminated the nested O(n²) bubble sort loops that perform element-by-element comparisons and swaps
  • Replaced with Python's highly optimized Timsort algorithm (O(n log n) worst-case)

Why this leads to massive speedup:

  • Bubble sort complexity: The original code performs ~n²/2 comparisons and up to n²/2 swaps for n elements
  • Timsort efficiency: Python's built-in sort is implemented in C, uses adaptive algorithms that perform well on partially sorted data, and has much better algorithmic complexity
  • Memory access patterns: Built-in sort has better cache locality compared to the random memory access pattern of bubble sort

Test case performance patterns:

  • Small lists (< 10 elements): Modest 10-45% improvements due to reduced Python interpreter overhead
  • Large lists (1000 elements): Dramatic 10,000-90,000% speedups where algorithmic complexity dominates:
    • Already sorted: 57,607% faster (Timsort's adaptive nature shines)
    • Reverse sorted: 92,409% faster (worst case for bubble sort)
    • Random data: 44,000+ % faster (consistent O(n log n) vs O(n²) difference)

The optimization is most effective for larger datasets where the O(n²) vs O(n log n) complexity difference becomes pronounced.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 20 Passed
🌀 Generated Regression Tests 60 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
benchmarks/test_benchmark_bubble_sort.py::test_sort2 7.60ms 22.9μs ✅33115%
test_bubble_sort.py::test_sort 898ms 156μs ✅574480%
test_bubble_sort_conditional.py::test_sort 11.6μs 7.79μs ✅48.7%
test_bubble_sort_import.py::test_sort 894ms 158μs ✅563807%
test_bubble_sort_in_class.py::TestSorter.test_sort_in_pytest_class 907ms 159μs ✅567088%
test_bubble_sort_parametrized.py::test_sort_parametrized 570ms 156μs ✅364589%
test_bubble_sort_parametrized_loop.py::test_sort_loop_parametrized 136μs 49.9μs ✅173%
🌀 Generated Regression Tests and Runtime
import random # used for generating large random lists import string # used for string sorting tests import sys # used for testing with large/small numbers # imports import pytest # used for our unit tests from code_to_optimize.bubble_sort import sorter # unit tests # -------------------------- # 1. Basic Test Cases # -------------------------- def test_sorter_empty_list(): # Test that an empty list returns an empty list codeflash_output = sorter([]) # 9.71μs -> 7.62μs (27.3% faster) def test_sorter_single_element(): # Test that a single-element list returns itself codeflash_output = sorter([42]) # 8.75μs -> 8.75μs (0.000% faster) def test_sorter_sorted_list(): # Test that a sorted list remains unchanged codeflash_output = sorter([1, 2, 3, 4, 5]) # 10.3μs -> 7.88μs (31.2% faster) def test_sorter_reverse_sorted_list(): # Test that a reverse-sorted list is sorted correctly codeflash_output = sorter([5, 4, 3, 2, 1]) # 10.8μs -> 8.75μs (23.3% faster) def test_sorter_unsorted_list(): # Test that an unsorted list is sorted correctly codeflash_output = sorter([3, 1, 4, 1, 5, 9, 2]) # 11.5μs -> 8.79μs (31.3% faster) def test_sorter_duplicates(): # Test that duplicate values are handled correctly codeflash_output = sorter([2, 3, 2, 1, 3, 1]) # 11.2μs -> 7.75μs (44.1% faster) def test_sorter_negative_numbers(): # Test that negative numbers are sorted correctly codeflash_output = sorter([-3, -1, -2, 0, 2, 1]) # 10.8μs -> 7.88μs (36.5% faster) def test_sorter_mixed_positive_negative(): # Test that a mix of positive and negative numbers is sorted correctly codeflash_output = sorter([5, -10, 3, 0, -2, 8]) # 11.1μs -> 8.92μs (24.3% faster) def test_sorter_already_sorted_with_duplicates(): # Test that a sorted list with duplicates remains unchanged codeflash_output = sorter([1, 2, 2, 3, 3, 4]) # 10.4μs -> 8.75μs (18.6% faster) # -------------------------- # 2. Edge Test Cases # -------------------------- def test_sorter_all_identical(): # Test that a list where all elements are identical is unchanged codeflash_output = sorter([7, 7, 7, 7, 7]) # 9.96μs -> 8.75μs (13.8% faster) def test_sorter_two_elements_sorted(): # Test that two already sorted elements remain unchanged codeflash_output = sorter([1, 2]) # 9.71μs -> 7.54μs (28.7% faster) def test_sorter_two_elements_unsorted(): # Test that two unsorted elements are swapped codeflash_output = sorter([2, 1]) # 9.50μs -> 8.62μs (10.1% faster) def test_sorter_large_negative_and_positive(): # Test with very large and very small numbers arr = [sys.maxsize, -sys.maxsize - 1, 0] expected = [-sys.maxsize - 1, 0, sys.maxsize] codeflash_output = sorter(arr) # 10.7μs -> 8.17μs (31.1% faster) def test_sorter_floats(): # Test with floating point numbers arr = [3.1, 2.2, 5.5, 1.0, 4.4] expected = [1.0, 2.2, 3.1, 4.4, 5.5] codeflash_output = sorter(arr) # 12.8μs -> 8.79μs (45.0% faster) def test_sorter_mixed_int_float(): # Test with a mix of ints and floats arr = [1, 2.2, 0, 3.3, 2] expected = [0, 1, 2, 2.2, 3.3] codeflash_output = sorter(arr) # 12.0μs -> 8.17μs (47.5% faster) def test_sorter_strings(): # Test with a list of strings arr = ["banana", "apple", "cherry"] expected = ["apple", "banana", "cherry"] codeflash_output = sorter(arr) # 10.4μs -> 8.67μs (19.7% faster) def test_sorter_strings_with_duplicates_and_case(): # Test with strings, duplicates, and mixed case arr = ["Apple", "banana", "apple", "Banana"] expected = ["Apple", "Banana", "apple", "banana"] codeflash_output = sorter(arr) # 10.7μs -> 8.04μs (32.6% faster) def test_sorter_unicode_strings(): # Test with unicode strings arr = ["café", "cafe", "cafè"] expected = ["cafe", "cafè", "café"] codeflash_output = sorter(arr) # 10.9μs -> 9.25μs (18.0% faster) def test_sorter_empty_strings(): # Test with empty strings in the list arr = ["", "a", "", "b"] expected = ["", "", "a", "b"] codeflash_output = sorter(arr) # 10.2μs -> 8.88μs (14.5% faster) def test_sorter_list_with_none_raises(): # Test that a list with None raises TypeError arr = [1, None, 2] with pytest.raises(TypeError): sorter(arr) # 38.9μs -> 37.8μs (2.87% faster) def test_sorter_list_with_incomparable_types_raises(): # Test that a list with incomparable types raises TypeError arr = [1, "a", 2] with pytest.raises(TypeError): sorter(arr) # 39.9μs -> 38.8μs (3.01% faster) def test_sorter_mutates_input(): # Test that the input list is mutated (in-place sort) arr = [2, 1] sorter(arr) # 9.83μs -> 8.67μs (13.5% faster) def test_sorter_returns_reference_to_input(): # Test that the returned list is the same object as the input arr = [2, 1] codeflash_output = sorter(arr); result = codeflash_output # 9.62μs -> 8.67μs (11.1% faster) # -------------------------- # 3. Large Scale Test Cases # -------------------------- def test_sorter_large_random_integers(): # Test sorting a large list of random integers arr = [random.randint(-10000, 10000) for _ in range(1000)] expected = sorted(arr) codeflash_output = sorter(arr.copy()) # 30.4ms -> 67.6μs (44819% faster) def test_sorter_large_sorted(): # Test sorting a large already sorted list arr = list(range(1000)) expected = list(range(1000)) codeflash_output = sorter(arr.copy()) # 20.6ms -> 35.6μs (57607% faster) def test_sorter_large_reverse_sorted(): # Test sorting a large reverse sorted list arr = list(range(999, -1, -1)) expected = list(range(1000)) codeflash_output = sorter(arr.copy()) # 33.2ms -> 36.9μs (89772% faster) def test_sorter_large_all_identical(): # Test sorting a large list of all identical elements arr = [42] * 1000 expected = [42] * 1000 codeflash_output = sorter(arr.copy()) # 19.5ms -> 34.8μs (55929% faster) def test_sorter_large_strings(): # Test sorting a large list of random strings arr = [''.join(random.choices(string.ascii_letters, k=5)) for _ in range(1000)] expected = sorted(arr) codeflash_output = sorter(arr.copy()) # 31.3ms -> 96.4μs (32314% faster) def test_sorter_large_floats(): # Test sorting a large list of random floats arr = [random.uniform(-1e6, 1e6) for _ in range(1000)] expected = sorted(arr) codeflash_output = sorter(arr.copy()) # 28.6ms -> 294μs (9622% faster) def test_sorter_large_duplicates(): # Test sorting a large list with many duplicates arr = [random.choice([1, 2, 3, 4, 5]) for _ in range(1000)] expected = sorted(arr) codeflash_output = sorter(arr.copy()) # 27.7ms -> 56.9μs (48603% faster) # codeflash_output is used to check that the output of the original code is the same as that of the optimized code. #------------------------------------------------ import random # used for generating large random lists import string # used for string sorting tests import sys # used for edge integer values # imports import pytest # used for our unit tests from code_to_optimize.bubble_sort import sorter # unit tests # ---------------- BASIC TEST CASES ---------------- def test_sorter_basic_sorted(): # Already sorted list arr = [1, 2, 3, 4, 5] codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.7μs -> 8.29μs (28.6% faster) def test_sorter_basic_reverse(): # Reverse sorted list arr = [5, 4, 3, 2, 1] codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.9μs -> 8.71μs (24.9% faster) def test_sorter_basic_unsorted(): # Unsorted list arr = [3, 1, 4, 5, 2] codeflash_output = sorter(arr.copy()); result = codeflash_output # 9.04μs -> 8.62μs (4.83% faster) def test_sorter_basic_duplicates(): # List with duplicates arr = [2, 3, 2, 1, 3] codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.6μs -> 8.04μs (32.1% faster) def test_sorter_basic_single_element(): # Single element list arr = [42] codeflash_output = sorter(arr.copy()); result = codeflash_output # 9.83μs -> 7.83μs (25.5% faster) def test_sorter_basic_two_elements_sorted(): # Two elements already sorted arr = [1, 2] codeflash_output = sorter(arr.copy()); result = codeflash_output # 9.83μs -> 8.67μs (13.5% faster) def test_sorter_basic_two_elements_unsorted(): # Two elements unsorted arr = [2, 1] codeflash_output = sorter(arr.copy()); result = codeflash_output # 9.75μs -> 7.83μs (24.5% faster) def test_sorter_basic_negative_numbers(): # List with negative numbers arr = [-3, -1, -2, 0, 1] codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.5μs -> 8.04μs (30.6% faster) def test_sorter_basic_mixed_signs(): # List with positive and negative numbers arr = [0, -1, 3, -2, 2] codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.8μs -> 8.21μs (31.0% faster) def test_sorter_basic_floats(): # List with floats arr = [2.2, 1.1, 3.3, 0.0, -1.1] codeflash_output = sorter(arr.copy()); result = codeflash_output # 12.4μs -> 9.58μs (29.1% faster) def test_sorter_basic_strings(): # List of strings arr = ["banana", "apple", "cherry"] codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.6μs -> 8.38μs (26.9% faster) def test_sorter_basic_empty(): # Empty list arr = [] codeflash_output = sorter(arr.copy()); result = codeflash_output # 9.29μs -> 8.12μs (14.4% faster) # ---------------- EDGE TEST CASES ---------------- def test_sorter_edge_all_equal(): # All elements are the same arr = [7, 7, 7, 7] codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.1μs -> 8.21μs (23.3% faster) def test_sorter_edge_large_integers(): # List with very large integers arr = [sys.maxsize, 0, -sys.maxsize - 1, 123456789] codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.6μs -> 9.12μs (27.4% faster) def test_sorter_edge_mixed_types_raises(): # List with mixed types should raise TypeError arr = [1, "a", 3] with pytest.raises(TypeError): sorter(arr.copy()) # 40.9μs -> 38.8μs (5.37% faster) def test_sorter_edge_nested_lists_raises(): # List with nested lists should raise TypeError arr = [1, [2], 3] with pytest.raises(TypeError): sorter(arr.copy()) # 40.8μs -> 38.8μs (5.05% faster) def test_sorter_edge_none_in_list_raises(): # List with None should raise TypeError arr = [1, None, 2] with pytest.raises(TypeError): sorter(arr.copy()) # 40.7μs -> 38.7μs (5.06% faster) def test_sorter_edge_single_character_strings(): # List of single-character strings arr = list("dcba") codeflash_output = sorter(arr.copy()); result = codeflash_output # 11.0μs -> 8.96μs (22.8% faster) def test_sorter_edge_unicode_strings(): # List with unicode strings arr = ["éclair", "apple", "Éclair", "banana"] codeflash_output = sorter(arr.copy()); result = codeflash_output # 12.2μs -> 9.25μs (31.5% faster) def test_sorter_edge_empty_strings(): # List with empty strings arr = ["", "a", "b", ""] codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.8μs -> 8.88μs (21.1% faster) def test_sorter_edge_floats_and_ints(): # List with both ints and floats (should sort) arr = [1, 2.2, 0, -1.1, 2] codeflash_output = sorter(arr.copy()); result = codeflash_output # 12.2μs -> 9.04μs (35.5% faster) def test_sorter_edge_large_negative_numbers(): # List with large negative numbers arr = [-999999999, -1, -1000000000] codeflash_output = sorter(arr.copy()); result = codeflash_output # 10.5μs -> 8.46μs (24.6% faster) # ---------------- LARGE SCALE TEST CASES ---------------- def test_sorter_large_sorted(): # Large already sorted list arr = list(range(1000)) codeflash_output = sorter(arr.copy()); result = codeflash_output # 20.9ms -> 36.6μs (56921% faster) def test_sorter_large_reverse(): # Large reverse sorted list arr = list(range(999, -1, -1)) codeflash_output = sorter(arr.copy()); result = codeflash_output # 33.8ms -> 36.5μs (92409% faster) def test_sorter_large_random(): # Large random list of ints arr = random.sample(range(-10000, -9000), 1000) expected = sorted(arr) codeflash_output = sorter(arr.copy()); result = codeflash_output # 30.5ms -> 69.2μs (43899% faster) def test_sorter_large_duplicates(): # Large list with many duplicates arr = [random.choice([1, 2, 3, 4, 5]) for _ in range(1000)] expected = sorted(arr) codeflash_output = sorter(arr.copy()); result = codeflash_output # 27.8ms -> 56.2μs (49399% faster) def test_sorter_large_strings(): # Large list of random strings arr = [''.join(random.choices(string.ascii_letters, k=5)) for _ in range(1000)] expected = sorted(arr) codeflash_output = sorter(arr.copy()); result = codeflash_output # 31.4ms -> 97.9μs (32005% faster) def test_sorter_large_floats(): # Large list of random floats arr = [random.uniform(-10000, 10000) for _ in range(1000)] expected = sorted(arr) codeflash_output = sorter(arr.copy()); result = codeflash_output # 29.8ms -> 290μs (10159% faster) def test_sorter_large_all_equal(): # Large list where all elements are the same arr = [42] * 1000 codeflash_output = sorter(arr.copy()); result = codeflash_output # 19.9ms -> 32.9μs (60314% faster) def test_sorter_large_alternating(): # Large list with alternating values arr = [0, 1] * 500 expected = [0] * 500 + [1] * 500 codeflash_output = sorter(arr.copy()); result = codeflash_output # 23.7ms -> 51.8μs (45589% faster) # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-mdxr09lk and push.

Codeflash

The optimization replaces a **manual bubble sort implementation** with Python's **built-in `arr.sort()` method**. **Key changes:** - Eliminated the nested O(n²) bubble sort loops that perform element-by-element comparisons and swaps - Replaced with Python's highly optimized Timsort algorithm (O(n log n) worst-case) **Why this leads to massive speedup:** - **Bubble sort complexity**: The original code performs ~n²/2 comparisons and up to n²/2 swaps for n elements - **Timsort efficiency**: Python's built-in sort is implemented in C, uses adaptive algorithms that perform well on partially sorted data, and has much better algorithmic complexity - **Memory access patterns**: Built-in sort has better cache locality compared to the random memory access pattern of bubble sort **Test case performance patterns:** - **Small lists (< 10 elements)**: Modest 10-45% improvements due to reduced Python interpreter overhead - **Large lists (1000 elements)**: Dramatic 10,000-90,000% speedups where algorithmic complexity dominates: - Already sorted: 57,607% faster (Timsort's adaptive nature shines) - Reverse sorted: 92,409% faster (worst case for bubble sort) - Random data: 44,000+ % faster (consistent O(n log n) vs O(n²) difference) The optimization is most effective for larger datasets where the O(n²) vs O(n log n) complexity difference becomes pronounced.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Aug 4, 2025
@codeflash-ai codeflash-ai bot requested a review from aseembits93 August 4, 2025 23:35
@aseembits93 aseembits93 closed this Aug 4, 2025
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-sorter-mdxr09lk branch August 4, 2025 23:55
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

1 participant