Skip to content

Conversation

codeflash-ai-dev[bot]
Copy link

📄 357,176% (3,571.76x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 3.55 seconds 992 microseconds (best of 547 runs)

⚡️ This change will improve the performance of the following benchmarks:

Benchmark File :: Function Original Runtime Expected New Runtime Speedup
code_to_optimize.tests.pytest.benchmarks.test_benchmark_bubble_sort::test_sort 7.77 milliseconds 46.3 microseconds 16686.09%
code_to_optimize.tests.pytest.benchmarks.test_process_and_sort::test_compute_and_sort 18.2 milliseconds 10.5 milliseconds 73.15%
code_to_optimize.tests.pytest.benchmarks.test_process_and_sort::test_no_func 7.73 milliseconds 38.5 microseconds 19982.32%

🔻 This change will degrade the performance of the following benchmarks:

{benchmark_info_degraded}

📝 Explanation and details

To optimize the given sorting algorithm, we can replace the implemented bubble sort with a more efficient sorting algorithm like Timsort, which is the default sorting algorithm in Python's sort method. Timsort has a time complexity of O(n log n) and is generally more efficient than bubble sort, which has a time complexity of O(n^2).

Here's the optimized version of the code.

This simple change will significantly improve the performance of the sorting operation, especially for larger lists.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 20 Passed
🌀 Generated Regression Tests 69 Passed
⏪ Replay Tests 2 Passed
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests Details
- benchmarks/codeflash_replay_tests/test_to_optimize__replay_test_0.py - benchmarks/codeflash_replay_tests/test_to_optimize__replay_test_1.py - benchmarks/test_benchmark_bubble_sort.py - test_bubble_sort.py - test_bubble_sort_conditional.py - test_bubble_sort_import.py - test_bubble_sort_in_class.py - test_bubble_sort_parametrized.py - test_bubble_sort_parametrized_loop.py
🌀 Generated Regression Tests Details
import pytest # used for our unit tests from code_to_optimize.bubble_sort import sorter # unit tests def test_empty_list(): # Test with an empty list codeflash_output = sorter([]) def test_single_element_list(): # Test with a single element list codeflash_output = sorter([1]) codeflash_output = sorter(["a"]) def test_already_sorted_list(): # Test with an already sorted list codeflash_output = sorter([1, 2, 3, 4, 5]) codeflash_output = sorter(["a", "b", "c", "d"]) def test_reverse_sorted_list(): # Test with a reverse sorted list codeflash_output = sorter([5, 4, 3, 2, 1]) codeflash_output = sorter(["d", "c", "b", "a"]) def test_list_with_duplicates(): # Test with a list that has duplicate elements codeflash_output = sorter([3, 1, 2, 3, 1]) codeflash_output = sorter(["a", "c", "b", "a", "c"]) def test_list_with_negative_numbers(): # Test with a list that has negative numbers codeflash_output = sorter([3, -1, 2, -3, 1]) codeflash_output = sorter([-5, -4, -3, -2, -1]) def test_list_with_mixed_positive_and_negative_numbers(): # Test with a list that has mixed positive and negative numbers codeflash_output = sorter([3, -1, 2, -3, 1, 0]) codeflash_output = sorter([-10, 5, -3, 2, 0, 1]) def test_list_with_floating_point_numbers(): # Test with a list that has floating point numbers codeflash_output = sorter([1.1, 2.2, 3.3, 0.0, -1.1]) codeflash_output = sorter([3.14, 2.71, 1.61, 0.0]) def test_list_with_strings_of_different_lengths(): # Test with a list that has strings of different lengths codeflash_output = sorter(["apple", "banana", "cherry", "date"]) codeflash_output = sorter(["a", "abc", "ab", "abcd"]) def test_large_list(): # Test with a large list to check performance and scalability codeflash_output = sorter(list(range(1000))) # Already sorted codeflash_output = sorter(list(range(1000, 0, -1))) # Reverse sorted codeflash_output = sorter(list(range(500)) + list(range(500))) # Duplicates def test_list_with_identical_elements(): # Test with a list where all elements are identical codeflash_output = sorter([1, 1, 1, 1, 1]) codeflash_output = sorter(["same", "same", "same"]) def test_list_with_special_characters(): # Test with a list that has special characters codeflash_output = sorter(["!", "@", "#", "$", "%"]) codeflash_output = sorter(["apple", "banana", "cherry", "!"]) def test_list_with_upper_and_lower_case_strings(): # Test with a list that has a mix of upper and lower case strings codeflash_output = sorter(["apple", "Banana", "cherry", "Date"]) codeflash_output = sorter(["A", "b", "C", "d"]) def test_list_with_none_values(): # Test with a list that has None values (expected to raise TypeError) with pytest.raises(TypeError): sorter([None, 1, 2, 3]) with pytest.raises(TypeError): sorter([None, "a", "b", "c"]) # codeflash_output is used to check that the output of the original code is the same as that of the optimized code. import pytest # used for our unit tests from code_to_optimize.bubble_sort import sorter # unit tests # Basic Test Cases def test_empty_list(): codeflash_output = sorter([]) def test_single_element(): codeflash_output = sorter([1]) codeflash_output = sorter(['a']) def test_sorted_list(): codeflash_output = sorter([1, 2, 3, 4, 5]) codeflash_output = sorter(['a', 'b', 'c', 'd']) def test_reverse_sorted_list(): codeflash_output = sorter([5, 4, 3, 2, 1]) codeflash_output = sorter(['d', 'c', 'b', 'a']) def test_duplicates(): codeflash_output = sorter([3, 1, 2, 1, 3]) codeflash_output = sorter(['b', 'a', 'b', 'a']) def test_all_identical(): codeflash_output = sorter([1, 1, 1, 1, 1]) codeflash_output = sorter(['a', 'a', 'a', 'a']) def test_negative_numbers(): codeflash_output = sorter([-1, -3, -2, -5, -4]) codeflash_output = sorter([0, -1, 1, -2, 2]) def test_mixed_positive_negative(): codeflash_output = sorter([3, -1, 2, -3, 1]) codeflash_output = sorter([-2, -1, 0, 1, 2]) def test_floats(): codeflash_output = sorter([1.1, 3.3, 2.2, 5.5, 4.4]) codeflash_output = sorter([0.1, -0.1, 0.2, -0.2]) def test_mixed_integers_floats(): codeflash_output = sorter([1, 2.2, 3, 4.4, 5]) codeflash_output = sorter([-1, -2.2, 0, 2.2, 1]) def test_strings_varying_lengths(): codeflash_output = sorter(['apple', 'banana', 'cherry', 'date']) codeflash_output = sorter(['a', 'abc', 'ab', 'abcd']) # Large Scale Test Cases def test_large_list(): large_list = list(range(10000, 9000, -1)) codeflash_output = sorter(large_list) def test_large_floats(): large_list = [x * 0.1 for x in range(10000, 9000, -1)] codeflash_output = sorter(large_list) # Edge Cases def test_none_values(): with pytest.raises(TypeError): sorter([1, None, 2, 3]) with pytest.raises(TypeError): sorter([None, 'a', 'b']) def test_boolean_values(): codeflash_output = sorter([True, False, True]) codeflash_output = sorter([False, True, False, True]) def test_special_floats(): codeflash_output = sorter([1.0, float('inf'), 2.0, float('-inf'), 3.0]) codeflash_output = sorter([float('nan'), 1.0, 2.0, float('nan')]); sorted_nan_list = codeflash_output def test_large_small_numbers(): codeflash_output = sorter([1e308, 1e-308, 1e307, 1e-307]) codeflash_output = sorter([1e-10, 1e10, 1e-5, 1e5]) def test_special_characters(): codeflash_output = sorter(['apple', 'banana!', 'cherry#', 'date]) codeflash_output = sorter(['a@', 'b#', 'c, 'd%']) def test_empty_strings(): codeflash_output = sorter(['apple', '', 'banana', '']) codeflash_output = sorter(['', 'a', 'b', '']) def test_very_long_strings(): codeflash_output = sorter(['a' * 1000, 'b' * 1000, 'c' * 1000]) codeflash_output = sorter(['apple' * 200, 'banana' * 200, 'cherry' * 200]) def test_immutable_mutable(): with pytest.raises(TypeError): sorter([1, [2, 3], 'a', {'key': 'value'}]) with pytest.raises(TypeError): sorter([(1, 2), {3, 4}, 'b', [5, 6]]) def test_custom_objects(): class CustomObject: def __init__(self, value): self.value = value with pytest.raises(TypeError): sorter([CustomObject(1), CustomObject(2), CustomObject(3)]) with pytest.raises(TypeError): sorter([1, CustomObject(2), 3]) # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-m9080j7b and push.

Codeflash

To optimize the given sorting algorithm, we can replace the implemented bubble sort with a more efficient sorting algorithm like Timsort, which is the default sorting algorithm in Python's `sort` method. Timsort has a time complexity of O(n log n) and is generally more efficient than bubble sort, which has a time complexity of O(n^2). Here's the optimized version of the code. This simple change will significantly improve the performance of the sorting operation, especially for larger lists.
@codeflash-ai-dev codeflash-ai-dev bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Apr 2, 2025
@codeflash-ai-dev codeflash-ai-dev bot requested a review from alvin-r April 2, 2025 17:48
@alvin-r alvin-r closed this Apr 2, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

1 participant