Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 36 additions & 1 deletion application/nlq/business/vector_store.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,20 +67,29 @@ def get_all_agent_cot_samples(cls, profile_name):
def add_sample(cls, profile_name, question, answer):
logger.info(f'add sample question: {question} to profile {profile_name}')
embedding = cls.create_vector_embedding_with_bedrock(question)
has_same_sample = cls.search_same_query(profile_name, 1, 'uba', embedding)
if has_same_sample:
logger.info(f'delete sample sample entity: {question} to profile {profile_name}')
if cls.opensearch_dao.add_sample('uba', profile_name, question, answer, embedding):
logger.info('Sample added')

@classmethod
def add_entity_sample(cls, profile_name, entity, comment):
logger.info(f'add sample entity: {entity} to profile {profile_name}')
embedding = cls.create_vector_embedding_with_bedrock(entity)
has_same_sample = cls.search_same_query(profile_name, 1, 'uba_ner', embedding)
if has_same_sample:
logger.info(f'delete sample sample entity: {entity} to profile {profile_name}')
if cls.opensearch_dao.add_entity_sample('uba_ner', profile_name, entity, comment, embedding):
logger.info('Sample added')

@classmethod
def add_agent_cot_sample(cls, profile_name, entity, comment):
logger.info(f'add sample entity: {entity} to profile {profile_name}')
logger.info(f'add agent sample query: {entity} to profile {profile_name}')
embedding = cls.create_vector_embedding_with_bedrock(entity)
has_same_sample = cls.search_same_query(profile_name, 1, 'uba_agent', embedding)
if has_same_sample:
logger.info(f'delete agent sample sample query: {entity} to profile {profile_name}')
if cls.opensearch_dao.add_agent_cot_sample('uba_agent', profile_name, entity, comment, embedding):
logger.info('Sample added')

Expand Down Expand Up @@ -124,3 +133,29 @@ def search_sample(cls, profile_name, top_k, index_name, query):
logger.info(f'search sample question: {query} {index_name} from profile {profile_name}')
sample_list = cls.opensearch_dao.search_sample(profile_name, top_k, index_name, query)
return sample_list

@classmethod
def search_sample_with_embedding(cls, profile_name, top_k, index_name, query_embedding):
sample_list = cls.opensearch_dao.search_sample_with_embedding(profile_name, top_k, index_name, query_embedding)
return sample_list

@classmethod
def search_same_query(cls, profile_name, top_k, index_name, embedding):
search_res = cls.search_sample_with_embedding(profile_name, top_k, index_name, embedding)
if len(search_res) > 0:
similarity_sample = search_res[0]
similarity_score = similarity_sample["_score"]
similarity_id = similarity_sample['_id']
if similarity_score == 1.0:
if index_name == "uba":
cls.delete_sample(profile_name, similarity_id)
return True
elif index_name == "uba_ner":
cls.delete_entity_sample(profile_name, similarity_id)
return True
elif index_name == "uba_agent":
cls.delete_agent_cot_sample(profile_name, similarity_id)
return True
else:
return False
return False
6 changes: 5 additions & 1 deletion application/nlq/data_access/opensearch.py
Original file line number Diff line number Diff line change
Expand Up @@ -191,6 +191,10 @@ def delete_sample(self, index_name, profile_name, doc_id):

def search_sample(self, profile_name, top_k, index_name, query):
records_with_embedding = create_vector_embedding_with_bedrock(query, index_name=index_name)
return self.search_sample_with_embedding(profile_name, top_k, index_name, records_with_embedding['vector_field'])


def search_sample_with_embedding(self, profile_name, top_k, index_name, query_embedding):
search_query = {
"size": top_k, # Adjust the size as needed to retrieve more or fewer results
"query": {
Expand All @@ -205,7 +209,7 @@ def search_sample(self, profile_name, top_k, index_name, query):
"knn": {
"vector_field": {
# Make sure 'vector_field' is the name of your vector field in OpenSearch
"vector": records_with_embedding['vector_field'],
"vector": query_embedding,
"k": top_k # Adjust k as needed to retrieve more or fewer nearest neighbors
}
}
Expand Down